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ABSTRACT
Researchers increasingly use electronic communication data
to construct and study large social networks, effectively in-
ferring unobserved ties (e.g. i is connected to j) from ob-
served communication events (e.g. i emails j). Often over-
looked, however, is the impact of tie definition on the corre-
sponding network, and in turn the relevance of the inferred
network to the research question of interest. Here we study
the problem of network inference and relevance for two email
data sets of different size and origin. In each case, we gener-
ate a family of networks parameterized by a threshold con-
dition on the frequency of emails exchanged between pairs
of individuals. After demonstrating that different choices of
the threshold correspond to dramatically different network
structures, we then formulate the relevance of these networks
in terms of a series of prediction tasks that depend on vari-
ous network features. In general, we find: a) that prediction
accuracy is maximized over a non-trivial range of thresholds
corresponding to 5–10 reciprocated emails per year; b) that
for any prediction task, choosing the optimal value of the
threshold yields a sizable (∼ 30%) boost in accuracy over
näıve choices; and c) that the optimal threshold value ap-
pears to be (somewhat surprisingly) consistent across data
sets and prediction tasks. We emphasize the practical utility
in defining ties via their relevance to the prediction task(s)
at hand and discuss implications of our empirical results.
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1. INTRODUCTION
The rapidly growing volume of electronic communication

data, such as that derived from email exchange, instant mes-
saging, mobile phones, online games, social networking or
social media sites, has been a great benefit to social net-
work analysis, enabling researchers to study networks at
very large scales and over extended time periods [19, 15,
16, 18, 20, 9, 5, 30]. However, the excitement generated
by this explosion of available data has overshadowed two
distinct but related problems: first, the inference problem,
that “real” social ties are not directly observable and hence
must be inferred from observations of events, like physical
interactions or communication records; and second the rel-
evance problem, that there is no one “true” social network,
but rather many such networks, each corresponding to a dif-
ferent definition of a tie, and each relevant to different social
processes.

To illustrate the interdependence of the inference and rel-
evance problems, consider three possible definitions for an
edge deriving from observed communication data1: (1) an
edge exists between i and j if either has communicated with
the other at least once in the past year; (2) an edge exists
if each has communicated with the other at least once in
the past week; and (3) an edge exists if each has commu-
nicated with the other at least once per week for the past
year. Stated in isolation, each of these definitions is plausi-
ble; yet each of them could potentially yield very different
networks, not only in terms of average density (i.e. number
of edges), but also in terms of important structural features
like path lengths, local clustering [33] and motifs, degree dis-
tribution, and community structure [26]. Moreover, which
of these networks is the“relevant”one will in general depend
on the research question of interest. For instance, if one is
interested in a process like communication between trusted
peers, where the relevant network is only made up of “strong
ties”, one might prefer definition (3) above; whereas if one
is interested only in short term diffusion of information, one
might prefer definition (2); or finally, if one is interested in
communities that persist over extended time intervals, one
may prefer definition (1). Of course, even these theoreti-
cally motivated edge definitions are unfortunately vague, as

1As we discuss in section 6, the inference/relevance problem
applies quite generally to observational data [13], not just
communication data, and even to networks generated by
other methods like surveys [24, 9].



no empirically grounded theory yet exists that links some
quantifiable definition of tie strength to, say, the transmis-
sion of some specific type of information or influence; indeed
tie strength itself remains an ambiguous concept with multi-
ple, possibly inconsistent definitions [12, 21]. Nevertheless,
the example serves to illustrate that the inference problem
(mapping observations to ties) cannot be resolved indepen-
dently of the relevance problem.
Typically, however, in network analysis research these prob-

lems are addressed separately. That is, the researcher first
nominates some plausible but ad-hoc definition of a tie, say
in terms of a“threshold”condition for an edge (e.g. “a tie ex-
ists between i and j if and only if they have communicated at
least once in the observed data”), and only then analyzes the
network corresponding to that definition. In other words,
rather than asking ”For this problem, what is the most rel-
evant network?,” the researcher is asking, in effect ”How is
this (ad hoc) network relevant to my problem?”Although in
any one instance this approach seems reasonable, because
the researcher considers only one possible definition of the
network, he or she has no way of knowing whether other
possible definitions would have been more relevant to the
problem at hand. Moreover, when different authors study-
ing different data sets make different assumptions about how
to infer network ties, comparisons across studies cannot be
made in a meaningful way.
To address the combined inference/relevance problem, we

propose that rather than defining ties based on intuitions
about the data and only then studying the properties of the
corresponding network, network analysts should instead de-
fine ties explicitly in terms of their relevance to the particular
objective of interest. For example, if one is interested is in
social influence and the diffusion of innovations or culture,
we propose that the “relevant” network be inferred directly
from some observed pattern of influence. Alternatively, if
the objective is to partition the network into like-minded
communities, one could identify the network that best cap-
tures the communities with shared beliefs. Or if one is inter-
ested in predicting which pairs are likely to communicate in
the future, one might identify the network that best predicts
previous communication activity.
In this paper we outline a primitive version of this ap-

proach, which proceeds in two stages. First, we first intro-
duce a simple method for inferring networks from pair-wise
communication data that admits an edge between two in-
dividuals only when their communication exceeds a certain
threshold τ of intensity. The method is primitive because,
in relying on an ad-hoc definition of a threshold, it suffers
from some of the same problems that we seek to resolve.
Nevertheless, as we illustrate with two email data sets—one,
based on two years of server logs at a major US university
[15]); and the other drawn from the publicly available Enron
email corpus [29]—it is general enough to demonstrate that
network structure can change dramatically as a function of
the tie definition. This dependence is visually apparent in
Figure 1, which depicts the largest component in networks
for different values of the threshold.
Having demonstrated the potential impact of the choice

of threshold, we then consider the issue of how to select
the “correct” value in terms of its relevance to some em-
pirically observed pattern of interest, where “relevance” is
formalized as a prediction task. To illustrate the method,
we again study the same two email datasets, identifying in

each case the value of τ that best predicts (a) observable
individual attributes like gender or status (e.g. for the Uni-

versity dataset, “status” corresponds to student, faculty,
affiliate, etc.), (b) the likelihood of future communication be-
tween pairs of individuals, or (c) (for the University data)
their co-membership in known communities. We emphasize
that there is nothing special about these particular predic-
tion tasks, which were chosen largely as a matter of con-
venience given the available data. Nevertheless, our results
highlight the main contributions of our proposed approach:

1. We find that there exists a non-trivial threshold on
edge weights—corresponding to about 5–10 recipro-
cated emails per year over which our set of chosen
prediction tasks seem to yield maximum accuracy.

2. Choosing the above “optimal” threshold produces a
sizeable (∼ 30%) boost in accuracy over näıve ap-
proaches of network inference.

3. Finally, we observe that this optimal range of threshold
values appears to be relatively consistent across both
datasets and the various prediction tasks.

The rest of the paper is organized as follows. Section 2
gives an overview of the related work, highlighting the dif-
ferences with our approach here. In Section 3, we introduce
the two data sets that we use to illustrate our argument,
and describe our method for inferring networks from com-
munication data. In Section 4, we then study the properties
of these families of networks, examining a range of network-
and node-level metrics. Next, in Section 5, we conduct sev-
eral prediction tasks on the inferred networks. Finally in
section 6, we present our conclusions and discuss directions
towards future work.

2. RELATEDWORK
Use of interpersonal communication for network inference

has been of interest to researchers for several decades. Early
work [28] utilized email traffic to infer social networks for the
purpose of discovering communities of shared interest. To
arrive at their network, the authors developed a highly cus-
tomized approach, discarding messages not thought to be
relevant to shared interests (e.g. bulk emails, emails sent
from administrative accounts, etc.), discarding nodes and
edges not part of the main connected component, and prun-
ing the main connected component to focus on “core” nodes.
More recent work using email data has focused on the fre-
quency of email exchange as an indicator of relevance. where
in some cases [31, 10, 1] the authors specify a fixed threshold,
mapping observed frequencies to binary (i.e. wij ∈ {0, 1})
edge weights, while in other cases directed, weighted edges
are constructed [8]. Finally, some authors have applied a
time-dependent threshold condition [6, 15, 5] to communi-
cation data in order to detect tie creation and deletion in
dynamic networks.

Although motivated by different research questions, the
approaches taken in these studies are consistent with that
outlined in the introduction: a single definition of what con-
stitutes a tie is chosen, largely on the basis of intuitive plausi-
bility, and only the properties of that particular network are
considered. The question of whether other possible defini-
tions might have generated different results, and if so, which
results are the relevant ones, is therefore rarely raised. Even



Figure 1: Topology of the largest components over various choices of threshold conditions for (a) a dataset
based on email server logs at a US university, and (b) the Enron email corpus. Significant changes in topology
are observed as the thresholding condition of the network is varied.

where alternative definitions are considered [15, 17], the pur-
pose is exclusively to serve as a robustness check on the find-
ings; thus the scope of possibilities is typically limited to
within some range of the original choice of threshold. Most
closely related to the current work are two recent studies us-
ing mobile phone data [27, 9]. In [27], the authors systemat-
ically deleted edges as a function of call frequency in order to
investigate the connectivity of the network, and its impact
on information diffusion. The main distinction between this
study and the current work—aside from our broader focus
on network properties other than connectivity—is that we
not only show that different choices of threshold generate
different networks, but also that some inferred networks are
more relevant than others with respect to social processes
(e.g. gender and status homophily) of interest. In [9], the
authors use communication data to predict self-reported ties
generated by a survey tool. Although this paper is similar to
ours in its emphasis on relevance, [9] treats self-reported ties
as the“ground truth,”whereas we make no such assumption.

3. INFERRING SOCIAL NETWORKS
In this section we first describe the two communication

datasets and then discuss our method for inferring the social
networks from communication events. We emphasize that
this method is by no means completely general—indeed, it
embodies a number of assumptions that impose ad-hoc re-
strictions on the range of possible inferred networks. Never-
theless, it is sufficiently general to admit a broad family of
networks, all of which are based on the same underlying set
of observations but which vary dramatically in structure, as
we show in Section 4.

3.1 Datasets
University. Our first dataset is a complied registry of all

email (incoming and outgoing, as recorded in server logs) as-
sociated with individuals at a large university in the United
States, comprised of undergraduate and graduate students,
faculty, and staff spanning over a period of two years (i.e.
in the order: Fall, Spring, Summer, Fall, Spring, Summer).

The emails contain encrypted IDs of the sender and recipi-
ent(s) of each email and the timestamp, but do not contain
the content. The dataset also features several (anonymized)
personal attributes, including status, gender, age, depart-
mental affiliation, number of years in the community, dorm
and home zipcode information for the students, as well as
course affiliations for the students at each semester.

In order to focus on a population of users who use emails
as a major communication mode, we have considered only
the individuals who have email IDs associated with the uni-
versity domain (non-university emails were excluded because
we did not have complete information about external ac-
counts). In addition, we excluded individuals who did not
send at least one email in each of the six semesters under
consideration; thus ensuring that we observed a consistent
set of individuals engaged in regular inter-personal commu-
nication. After applying both of these restrictions, our data
comprises 19,817 individuals with a total of 1,098,285 emails
over the two year period.

Enron. Our second dataset is a repository of the emails
exchanged internally among the employees at the Enron
Corporation, obtained through a subpoena as part of an in-
vestigation by the Federal Energy Regulatory Commission
(FERC) and then made public. The data set comprises 4,736
individuals (including both Enron executive officers as well
as individuals external to Enron but involved in communica-
tion), who sent 1,063,352 emails over the period 1998-2002.
In addition, information about the status of the individuals
in the corporation (e.g., “Director”, “Trader”, “Manager”,
etc.) was made available for public use. In contrast with
the University data, no filtering of the Enron data was
required.

3.2 Constructing Thresholded Networks
For the chosen set of individuals V in bothUniversity and

Enron, we define the weight ws
ij =

√
wij .wji of an edge be-

tween two individuals i and j as the geometric mean2 of

2Geometric mean of the number of emails between two users
ui and uj ensures that there is no tie if communication



Figure 2: Fractional network size in terms of nodes
and edges over different thresholds τ , and with re-
spect to the network corresponding to minimum
threshold (τ = 1). Results are shown for the Uni-

versity email dataset and the Enron corpus.

the annualized rate of messages exchanged over the span of
two and four years respectively, where wij is the number of
emails sent per year from i to j. We then define a network
G(V,Es; τ) comprising the edges Es between the pairs of
nodes i and j in V whose edge weights ws

ij exceed a specified
threshold τ . By systematically varying τ , therefore, we can
then obtain a family of networks, {G (τ1) , G (τ2) , · · · , G (τK)}
corresponding to more or less stringent definitions of what
counts as a “relationship”.

4. NETWORKDESCRIPTIVE STATISTICS
Having defined the family of networks {G (τ1) , G (τ2) , · · · ,

G (τK)}, we now investigate the variation in structural char-
acteristics as a function of the threshold τ . To do this, we
generate networks for the University and Enron email
datasets, for values of τ ranging between 0.5 and 503. For
each of these networks, we then consider two sets of features:
“network-level” features that capture properties of overall
network size and connectivity; and “node-level” features like
local clustering, bridging, and connectivity, that character-
ize individual nodes. The set of features we have consid-
ered is not intended to be exhaustive, nor are they necessar-
ily more revealing of network structure than other possible
choices. Nevertheless, they are commonly studied by net-
work analysts, and are often invoked to justify substantive
conclusions about outcomes of interest like the potential for
information flow through a network or the relative influence
of nodes (e.g. [4]).

4.1 Network-level Features
We first investigate the variation in the network size as

a function of the threshold τ . Figure 2 shows the number
of edges and (non-singleton) nodes for both email data sets,
from which it is clear that the choice of τ makes a sizeable

between ui and uj is unidirectional. This eliminates any
one-way communications, such as mass bulk emails from an
administrator at a university.
3The natural starting point for τ is the lowest value for which
both networks are defined. This corresponds to τ = 0.5,
or one email over the period of two years for the Univer-

sity dataset

Figure 3: Changes in characteristics of the network
components for the two email datasets.

Figure 4: Sizes of different network components as a
fraction of the entire network, shown over different
τ , for the two datasets. The colorbar corresponds to
the different component sizes.

impact on the inclusion and exclusion of both nodes and
edges. For example, by increasing the threshold from τ = 1
to τ = 5, the number of edges in the network are reduced
by an order of magnitude.

There are two notable features apparent in Figure 2: first,
the drop in the number of edges over increasing τ looks strik-
ingly similar in the two datasets; and second the number of
nodes included in the two networks diminishes at very dif-
ferent rates. The explanation for these different results is as
follows. The distribution of edge weights is similar between
the two datasets; thus the rate at which edges are removed
with increasing τ is also similar. The Enron dataset, how-
ever, contains many more “peripheral” nodes in the sense
that nodes are connected to the core of the network by only
a single edge; thus the rate at which nodes become isolates
with increasing τ is initially much greater than in the Uni-

versity dataset.
This can be seen in Figure 3, which shows the size and

number of connected components as a function of the thresh-
old. Figure 3(a) shows a dramatic drop in the fractional size
in both datasets, and Figure 3(b) a correspondingly dra-
matic increase in the number of disconnected components;
but the changes happen at a lower value of the threshold
(around τ = 5) for Enron.

This can also be seen in Figure 4, which shows, as a func-
tion of τ , how the sizes of the different network components
change as a fraction of the entire network. We observe that
for both datasets, at τ = 0.5 the majority of the nodes are in
the largest component (size ∼ 80%). Initially as τ increases,
nearly all of the deleted edges disconnect singletons from
the giant component, and only after τ approaches ∼ 10 are
larger components disconnected.



4.2 Node-level Features
A wide variety of structural features of nodes have been

used for purposes such as understanding the structure of
communities within a population [16, 25, 31], studying the
flow of information between individuals and groups [19], and
predicting the relative similarity of friends and strangers
[28]. Following prior work, we now consider a selected set of
features that can be roughly grouped into three categories:
those that measure the reach of a node (node degree, av-
erage neighbor degree, size of two-hop neighborhood) [15,
18]; those that measure the closure of the ego network (em-
beddedness, clustering coefficient) [15, 18]; and those that
measure how much the node is bridging communities (net-
work constraint, number of ego components) [4, 22]. We
first briefly review the definitions of these features and then
present the results for both datasets.

Reach

• Node Degree: The degree of a node is defined as the to-
tal number of neighbors, or immediate contacts, given
by the set Γi = {uj : eij ∈ Es}. For individual ui ∈ V ,
ki = ‖Γi‖.

• Average Neighbor Degree: The average neighbor de-

gree k
(n)
i of a node i is defined as the mean degree

over all of its immediate contacts.

• Size of Two-hop Neighborhood: Size of two hop neigh-

borhood k
(2)
i of a node i is the count of all of the node’s

neighbors plus all of the node’s neighbor’s neighbors.
Note that this is a count of the nodes, and therefore
is agnostic to how many edges there are between these
nodes.

Closure

• Embeddedness: We define the embeddedness of a node
with respect to its neighborhood as the mean of the
ratio between the set of common contacts and the set
of all contacts for the node and each neighbor. It is
given as,

Ei =
1

ki

∑
uj∈Γi

|Γi ∩ Γj |
|Γi ∪ Γj |

(1)

• Normalized Clustering Coefficient: The clustering co-
efficient of a node is a standard notion of local density4

(i.e. “the average probability that two of my neighbors

are neighbors of each other”), given by ci =
2|ejm|

ki(ki−1)
,

where ejm are the edges connecting uj , um ∈ Γi and Γi

is the “neighborhood” of i. As we have seen, however,
the graphs we are studying vary dramatically in terms
of their global density as a function of the threshold;
thus it is more informative to see how local density
varies relative to global density, rather than in absolute
terms. We therefore define the “normalized clustering
coefficient” of a node as the ratio of the clustering co-
efficient and the graph density:

Ci =
ci

ki/(N − 1)
, (2)

4Note, in this definition of clustering coefficient, we ignore
nodes whose clustering coefficients are undefined for a cer-
tain threshold τ .

where N is the number of nodes in the graph. Note
that in contrast to ci which varies between 0 and 1, Ci

has no upper bound.

Bridging

• Network Constraint: We define network constraint of
a certain node i as given in Burt [4]:

χi =
∑
j∈Γi

⎛
⎝pij +

∑
q∈Γi,q �=j

piqpqj

⎞
⎠

2

(3)

Here pij = wij/
∑

i wij denotes the amount of di-
rect attention that node i gives to node j. The sum∑

q∈Γi,q �=j piqpqj is the total amount of indirect atten-
tion that i gives to j through some intermediary q.
Thus, as i’s contacts become more connected, i’s at-
tention becomes more redundant and i’s network con-
straint increases. This measure is minimized when
none of i’s neighbors are neighbors with each other,
in which case it evaluates to 1

ki
.

• Ego Components: Restricting attention solely to a node
i’s immediate neighborhood (i.e. its neighbors and all
the edges between them), this measure ηi is a count
of the number of connected components that remain
when the focal node and its incident edges are re-
moved. It is maximal if none of the node’s neighbors
have connections between them and minimal if there
is a path connecting all of the node’s neighbors that
does not include the node itself.

As before, we study these features for both datasets for
the family of networks {G (τ1) , G (τ2) , · · · , G (τK)}, where
τ varies between 0.5 and 50. Figure 5(a–f) shows the val-
ues of six out of the seven of these features (average neigh-
bor degree behaves almost indistinguishably from two-hop
neighborhood, so is omitted for clarity), averaged over the
population of non-isolated nodes.

For all of the measures of reach the values are necessar-
ily monotonically decreasing because increasing τ can only
delete edges, which means every node’s degree can only go
down. As can be seen in Figure 5, the average degree of
the nodes decreases more sharply in the University than
it does in the Enron dataset, though the change in the
number of nodes reachable in two hops is very similar across
datasets.

In contrast with reach, the measures of bridging do not
necessarily change monotonically. Depending on which edges
are deleted—those that connect nodes to different groups or
those that tie groups together—both network constraint and
the number of ego components can increase or decrease. Em-
pirically, however, Figure 5 indicates that the overall trends
are mostly monotonic: in general, network constraint in-
creases, while number of ego components decreases (where
in contrast, the University dataset exhibits a slight in-
crease for low values of τ). The explanation for these trends
appears to be that for low τ the graph comprises a num-
ber of densely connected components, between which nodes
can act as bridges. As we increase the threshold, however,
the bridges between these clusters are preferentially severed,
suggesting that bridging edges are not as strong as those
within clusters, consistent with Granovetter’s conjecture on
the strength of weak ties [12].



Figure 5: Changes in aggregated node-level features
for the two email datasets.

The change in the measures of closure provide further
support for this hypothesis. Embeddedness shows similar
variation with τ to network constraint, indicating that as
edges are deleted the neighborhoods of adjacent nodes have
substantial overlap. The change in normalized clustering co-
efficient, however, is somewhat less intuitive and arises from
two competing effects. On the one hand, if locally embed-
ded “strong ties” arise out of a process of homophily and
triadic closure [15], then one might suspect clustering co-
efficient would increase with τ , as weaker, less embedded
ties are successively pruned away. On the other hand, if
locally embedded edges arise out individuals sharing com-
mon “social foci” [11], then dense clusters in the network
may be mostly made up of weak ties, in which case clus-
tering would decrease with increasing τ . As Figure 5(d)
indicates, we find evidence for both of these conjectures: at
first, the normalized clustering coefficient Ci increases, con-
sistent with Granovetter’s [12] intuition that the weakest
ties are bridges. Normalized clustering coefficient, however,
peaks around τ = 15 for theUniversity dataset and around
τ = 5 for the Enron dataset, after which it decreases mono-
tonically, suggesting that above a certain threshold most re-
maining ties are associated with dense clusters, and thus
commensurate with Feld’s social foci hypothesis [11], that
pruning weaker ties reduces clustering.

4.3 Discussion
Table 1 summarizes the results of this section, display-

ing sample values of τ for the features discussed above for
the University dataset. To interpret this table in con-
crete terms, we note that at least three of these choices of

Table 1: Summary of different node-level features
as a function of τ , shown for the University dataset.

ki k
(2)
i Ei ci Ci χi ηi

τ = 0.5 39.3 1,845.2 0.01 0.48 244.7 0.1 5.4
τ = 5 25.3 956.3 0.1 0.48 379.5 0.1 6.2
τ = 10 5.9 77.8 0.1 0.36 1,461.2 0.4 4.4
τ = 15 2.7 16.4 0.2 0.30 2,578.7 0.6 2.5
τ = 20 2.0 7.8 0.2 0.26 3,046 0.7 1.9
τ = 50 1.0 1.8 0.3 0.14 1,888.9 0.9 1.2

threshold correspond closely to definitions of ties that have
been invoked by previous authors: τ = 0.5 [10], τ = 5 [1],
and τ = 15 [31] respectively. That all three choices of τ
have been made in prior work suggests that all three are
defensible; yet Table 1 shows clearly that the networks we
would infer from them would have vastly different proper-
ties, in terms of its density, connectivity, and clustering,
among other properties. Average node degree, for example,
varies between k = 39.3 and k = 2.7. How then should one
choose the “correct” value of τ? Clearly one cannot do so
on intuitive grounds alone; nor do Figures 2, 3, and 5 pro-
vide much insight—the features clearly change, but not in a
way that suggests any obviously preferred value of τ . In the
next section, therefore, we propose a method for choosing τ
that depends explicitly on its relevance to some empirically
observed pattern or a social process of interest.

5. NETWORK-BASED PREDICTION
As noted in the introduction, if one were interested in,

say, social influence, our proposed approach would be to in-
fer the network that is most relevant to some empirically
observed pattern of influence. To illustrate this approach,
we study features present in our data: the distribution of
individual attributes (gender and status), future communi-
cation between pairs, and membership in known communi-
ties. In all cases, we formalize our notion of relevance as a
prediction task, where the desired value of τ is the one that
maximizes the prediction of the observed property of inter-
est for the network under consideration. For example, the
homophily principle [23] implies that two individuals sharing
the same status (e.g. undergraduate, graduate student, fac-
ulty, staff) are more likely to have an edge between them.
Rather than choosing some definition of the threshold on
some other grounds, therefore, we propose that the appro-
priate choice of threshold is the one for which the induced
network provides the best predictor of an individual’s sta-
tus, given the statuses of his or her network neighbors (who,
in turn, are defined by that choice of network).

5.1 Prediction Tasks
We now specify in more detail the four prediction tasks

for which can we empirically evaluate the relevance of the
networks: status; gender; future communication activity be-
tween pairs; and community membership. For all of the
prediction tasks, with the exception of community detec-
tion, we utilize the node’s attributes (e.g., affiliation, com-
munication activity) and structural features (e.g., degree,
normalized clustering coefficient) as well as the correspond-
ing attributes/activities of its neighbors. In the following
subsections, we discuss the prediction techniques for the dif-
ferent tasks in detail.



Node Status / Gender Prediction. Node status pre-
diction deals with predicting whether an individual (1) in
the University email dataset is a student (undergradu-
ate or graduate), faculty, staff, affiliate or other; or (2) in
the Enron dataset has a designation such as “Director”,
“Trader”, “Manager”, etc. within the company. Similarly,
our second prediction task deals with predicting the gender
of a particular node.
Let us represent the features for a node i in G(τ) as fτi =

{kτ
i , k

(n),τ
i , k

(2),τ
i , Eτ

i , C
τ
i , χ

τ
i , η

τ
i , ω1·|Ni(a1)|, ω2·|Ni(a2)|, · · · ,

ωq · |Ni(aq)|}, where ωj gives the mean edge weight of i with
respect to the neighbors having attribute value j (1 ≤ j ≤ q)
and Ni(aj) is the subset of i’s neighbors whose attribute
value is j. In our experiments we also consider an un-
weighted version, where we set all ωj to 1. Based on the
feature vectors fτi for all nodes i in the network G (τ), we

construct the feature matrix, Fτ ∈ R
d1×|V | and a vector of

the actual homophily attributes (status / gender) of each

node i in G (τ), given as, A ∈ R
1×|V |.

The prediction task over a network G (τ) can now be de-
fined as a learning problem where Fτ and A can be split
into training set (Fτ

R, AR), ∼ 90%, and test set (Fτ
S , AS),

∼ 10%, and used in a multi-class Support Vector Machine
(SVM) [3] framework (with a Gaussian RBF kernel) to pre-
dict the attributes of nodes. The prediction technique is
described as follows. For every G (τ), we perform a k-fold
cross-validation over the training set (Fτ

R, AR) to learn the
optimal model parameters, including feature weights and the
kernel width. These parameters are then used on the test

set (Fτ
S , AS) to predict the node attributes, ÂS .

Predicting Future Communication. The purpose of
this prediction task is to determine the probability of future
communication activity of a certain node (i.e. the num-
ber of emails sent). To predict activity at time tm+1, we
use a similar feature-based representation of a node i in the
network G (τ), i.e. the structural features, and the mean
weighted activities of its neighbors from time t0 to tm; but
we augment the feature space by also using the node i’s
communication over the past, from t0 to tm. Hence the fea-
ture vector for prediction at time tm+1 can be written as

fτi,m+1 = {kτ
i,0:m, k

(n),τ
i,0:m, k

(2),τ
i,0:m, Eτ

i,0:m, Cτ
i,0:m, χτ

i,0:m, ητ
i,0:m,∑

j∈Γi
wij · αj,0:m, αi,0, αi,1, · · · , αi,m}, where αj,0:m is the

activity of node j (i.e. number of emails sent by node j)
from time t0 to tm and αi,l is the activity of node i at time
tl.
We fit a linear model of communication activity as a func-

tion of the node level features Fτ
0:m, i.e.

Am = βτ
0:m · Fτ

0:m + ξτ0:m, (4)

where βτ
0:m are the regression coefficients and ξτ0:m is additive

noise. The best-fit coefficients βτ
0:m are used along with the

feature vector at tm+1, to predict future node activity given

as Âm+1 ∈ R
1×|V |:

Âm+1 = βτ
0:m · Fτ

m+1 (5)

For the prediction of future communication activity in the
University dataset, we divide the data over the span of
two years into the six different semesters and regress over
the first five semesters to predict the activity at the sixth
semester. In the case of the Enron email corpus, we divide
the span of activity over four years (1998-2002) into time in-

tervals of ti = 3 months each. We incrementally train over
the duration from t0 to tm, and predict the activity of each
node at tm+1, based on the technique discussed above.

Community Detection. In the final prediction task con-
sidered, we investigate the correlation between known com-
munity structure in the University dataset with that in-
ferred from network topology. For each threshold τ , we fit a
stochastic block model [32] to the unweighted network G (τ)
using variational Bayesian inference [14]. We then compare
the resulting (soft) partition of nodes to the partition given
by university affiliation of individuals to different schools,
as reported in the node metadata. We quantify the correla-
tion between the ground truth and inferred partitions using
normalized mutual information as described in section 5.2.

This method for community detection assumes a model
in which each node i belongs to one of Z latent groups (or
“blocks”), indicated by zi, with probability πμ, μ ∈ 1, . . . , Z.
The probability of an edge Aij between nodes i and j de-
pends only on the group assignments zi and zj : if the nodes
are in the same group (zi = zj), an edge exists between
them with probability θ+; if they are in different groups
(zi 	= zj), an edge exists between them with with proba-
bility θ−. Given only the observed edges eij ∈ Es in the
graph G (τ), distributions over the group assignments p(zi)
are inferred via variational Bayesian inference.

Here we fix the number of groups to Z = 5, corresponding
to the number of partitions given by university affiliation.
Affiliations for singletons are assigned a uniform distribution
over group assignments, i.e. p(zi = μ) = 1/Z. We note that,
in contrast to the other prediction tasks at the node and edge
level, this task involves the global structure of the network.

5.2 Results
For the tasks of predicting node status and gender, we

quantify performance via classification accuracy, i.e. the
fraction of nodes for which the predicted and actual values
agree. Likewise, we quantify agreement between the (real-
valued) predicted and actual future communication activity
using percent error between the number of future emails
predicted and observed.

In the case of community detection, however, the algo-
rithm returns a probability distribution over group mem-
bership for each node. We quantify the agreement between
this distribution and the actual group assignment (i.e. af-
filiation in the University dataset) via normalized mutual
information (NMI). This standard measure for evaluating
performance of community detection algorithms [7] is given
by the mutual information of the joint distribution over ac-
tual and predicted assignments, normalized by the entropy
of the marginal distribution over actual distribution. Con-
fined to lie between 0 (minimum agreement) and 1 (maxim-
ium agreement), NMI is similar to the number of correctly
classified nodes, but penalizes misclassified nodes more heav-
ily.

University. Prediction results for the University email
dataset for the four tasks described above are shown in Fig-
ure 6. First we observe that the predictions using weighted
features perform better than the corresponding unweighted
version; that is, the frequencies of communication (the edge
weights) are informative for all of the prediction tasks, even
in the thresholded graphs where infrequent communication
is discarded. Second, we observe that in all cases the ac-



Figure 6: Mean prediction accuracies (over all
nodes) for three different prediction tasks on the
University email dataset—(a) node status (e.g. un-
dergraduate, graduate, faculty etc.) and (b) gender
prediction, (c) predicting future communication ac-
tivity and NMI in detection of community structure
(i.e. affiliation to schools). Two cases per task (a-
c) are shown, one with unweighted features and the
other with weighted features. The error bars in the
plots (a-b) correspond to the k-fold cross validation
performed in the prediction process. The error bars
in plot (c) correspond to the deviation in prediction
error across all the users at each τ .

curacy peaks at a non-trivial value of τ , (i.e., at a value
greater than the minimum τ at which no threshold condition
is applied). This result suggests that there is some optimal
balance to be struck between removing noisy edges and re-
taining sufficient information about a node’s neighborhood
when making predictions. We note also that the gain asso-
ciated with discarded edges is nontrivial, corresponding to
as much as 30% performance gain over the näıve strategy
of retaining all the edges. Surprisingly, the same rule seems
to apply equally to weighted and unweighted networks; that
is, even when weights are retained on the edges, one still
gains a large boost by discarding the lowest-weight edges.
Third, although the prediction accuracy peaks at different
numerical values of τ (node status and future communica-
tion activity peak at τ = 7.5, whereas accuracy for gender
peaks at τ = 10, and community structure peaks at τ = 5),
the peaks all fall within a relatively small range.
Enron. With respect to the Enron email corpus, differ-

ences in the available data restrict us to just two of the above
four tasks: (1) prediction of node status (Figure 7); and
(2) prediction of future communication activity of the nodes
(Figure 8(a–b)). The results for node status are similar to
the University dataset: first, the maximum accuracy ap-
pears at a non-trivial value of τ both for the unweighted fea-
tures (τ = 7.5) and for the weighted features (τ = 10); and
second, the weighted features improve the prediction accu-
racies. For future communication activity we find the accu-
racy in the prediction of future activity peaks in roughly the
same range as for the University data (τ = 2.5 to τ = 7.5

Figure 7: Mean accuracies in prediction of node sta-
tus (i.e. designation at the company) for the Enron

email corpus; both unweighted and weighted fea-
tures are shown.

Figure 8: Mean accuracies (over all nodes) in pre-
diction of future communication activity for Enron

dataset, (a) unweighted case, and (b) weighted case.

for the unweighted and the weighted cases respectively), as
shown in Figure 8(a–b). We also observe that training over
extended durations improves the accuracy across all thresh-
olds. Once again, however, the range of τ where the accuracy
peaks seems to be reasonably consistent across training set
sizes.

5.3 Discussion
To summarize our findings, the threshold values that are

most predictive for the tasks we have considered are not
obvious, either on the basis of intuition (how would one
choose τ = 10 versus τ = 15?) or from the descriptive
statistics present in section 4.2. Nevertheless, the choice of
τ has a substantial impact: networks corresponding to opti-
mal values of τ perform as much as 30% better than näıve
choices (e.g. defining an edge whenever two individuals have
exchanged at least one email over the entire observation pe-
riod). Finally, we observe that as expected, different values
of τ optimize the prediction task for different empirical pat-
terns; however, on this point, we also note an intriguing
and unexpected secondary finding—that although different,
the optimal values of τ seem to fall in a surprisingly nar-
row range between τ = 5 and τ = 10. A partial explanation
for this result may be that the particular prediction tasks we
have examined all involve predicting a certain attribute of an
individual (status, gender, measure of communication and
community membership), given (a) her node features; and
(b) corresponding attribute values of her neighbors. Pos-



sibly, therefore, all four tasks are reflections of the same
general principle of homophily [23]—that similar nodes are
more likely to be connected by social ties than dissimilar
nodes—in which case the small range of optimal τ may not
be as surprising as it initially appears.
That the range of optimal τ is also similar across datasets

is, however, puzzling. The two datasets were collected sev-
eral years apart in very different organizations, and involved
very different people who were presumably communicating
about very different topics. Therefore there is no a priori
reason to suspect that the same, or even a remotely sim-
ilar definition of an edge, as reflected by the intensity of
reciprocated communication, should satisfy our prediction
tasks. Possibly the observed correspondence is simply a co-
incidence, and will not generalize to other cases. If such a
finding does hold, however, it holds out the promise that
networks inferred on the basis of one empirically observed
pattern are also relevant to other patterns that have not
been observed; that, for example, a network inferred on the
basis of gender association could be used to predict the diffu-
sion of social influence, or that the definition of a tie relevant
to diffusion in one network for which diffusion data may be
available could be applied to another network for which it
isn’t. Clearly claims of this nature are speculative; neverthe-
less, they suggest interesting directions for future research
efforts.

6. CONCLUSIONS
Returning to our original motivation, network analysis of

communication data takes as input some set of observations
and infers from these data a set of relations to which social
and psychological meaning is attached. We argue here that
this inference procedure, which heretofore has been defined
in a largely separate and often ad-hoc manner, should be as
much a part of the analysis as the measurement of struc-
tural features. In this paper, we have addressed a narrow
version of this general problem; that is, how to determine
an optimal threshold condition for edges so as to predict
particular node attributes (e.g. gender, status) or behavior.
Starting with a baseline network of communication based on
email exchanges in two different datasets, we constructed
a family of networks by consistently removing edges with
weights below a series of specified thresholds. We then stud-
ied a range of commonly used descriptive statistics, finding
dramatic differences in network- and node-level features de-
pending on the choice of threshold. Finally, we introduced
a method for selecting among all these possible networks
on the basis of a series of prediction tasks. The prediction
accuracies peak in a non-obvious—yet relatively narrow—
threshold range across both datasets. We conclude with a
discussion of several limitations of the work presented above,
as well as possible directions for future studies.
First, and most importantly, the general problem of “data

relevance” is considerably more difficult than we have al-
lowed for within our narrow framework. Obviously, the out-
come of any network inference procedure seems likely to be
influenced by the manner in which one generates the fam-
ily of possible networks to begin with; thus a more gen-
eral approach than the one we have adopted here might be
advisable. For example, although we have allowed ties to
be weighted, these weights refer only to the average fre-
quency of communication, and so capture “strength” at best
incompletely; and our use of the geometric mean of email
exchanges as the basis on which to apply the threshold con-

dition, although reasonable, is clearly not the only sensible
approach. We have also not allowed ties to be directed,
or “multiplex”, or to have time varying properties [20]; yet
all are arguably important features of real-world social rela-
tions. At a minimum, therefore, it would be desirable to es-
tablish methods for inferring weighted, directed, multiplex,
and time-varying networks from observational data.

A second, related limitation in this work is that we have
used a simple binary threshold function to generate candi-
date network structures. One can imagine a more sophis-
ticated means of transforming edge weights via arbitrary
functions and learning function parameters while simulate-
nously optimizing for predictive performance. Finally, it is
not clear why we find such consistency of the optimal choice
of threshold across different prediction tasks in our exper-
iments, and especially across different networks. Further
investigation across a wider range of communication data
and prediction tasks may provide insight into whether there
is any special significance to the range of threshold values
observed here.

In closing, we note that although the focus in this paper
has been on networks inferred from communication data,
social networks may be constructed from other kinds of ob-
servable data too, such as the joint participation of actors
in scientific collaborations, social events, informal organiza-
tions, corporate boards or even movies. As with communi-
cation data, researchers typically infer the presence of social
networks from data of this type by choosing some ad-hoc
threshold condition: for example, “i and j will be consid-
ered connected if they share at least one group.” And, as
with communication data, one may ask how relevant a par-
ticular shared affiliation is: just because two directors sit on
the same board does not necessarily indicate how often they
talk or how much they trust each other; nor is it clear what
one should infer from the existence of a co-authored paper, a
“friend”nomination on Facebook or any similar observation.
Even for network data generated by survey tools, an analo-
gous problem arises: survey respondents presumably apply
some criteria for whom they report as a contact; yet because
these criteria are generally not known to the researcher (or
even necessarily to the respondents themselves), it can be
difficult to interpret significance of the reported ties [2, 9].

The fundamental issue raised in this paper—that is, how
to infer relations of social and psychological relevance from
observable events and event participant reports—is therefore
an extremely general one that applies well beyond the scope
of communication data, impacting a much wider range of
network problems than we have considered here. Extending
the methods introduced here to apply to different classes
of interactional data, possibly in combination (e.g. email,
mobile phone calls, and affiliation data), and to more general
classes of network-related phenomena (e.g. the dynamics of
collective social behavior) therefore ought to provide ample
opportunities for future work.
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