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Active and passive sensing technologies are providing powerful mechanisms to track, model, and understand a range of health

behaviors and well-being states. Despite yielding rich, dense and high fidelity data, current sensing technologies often require

highly engineered study designs and persistent participant compliance, making them difficult to scale to large populations and to

data acquisition tasks spanning extended time periods. This paper situates social media as a new passive, unobtrusive sensing

technology. We propose a semi-supervised machine learning framework to combine small samples of data gathered through

active sensing, with large-scale social media data to infer mood instability (MI) in individuals. Starting from a theoretically-

grounded measure of MI obtained from mobile ecological momentary assessments (EMAs), we show that our model is able

to infer MI in a large population of Twitter users with 96% accuracy and F-1 score. Additionally, we show that, our model

predicts self-identifying Twitter users with bipolar and borderline personality disorder to exhibit twice the likelihood of high MI,

compared to that in a suitable control. We discuss the implications and the potential for integrating complementary sensing

capabilities to address complex research challenges in precision medicine.
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1 INTRODUCTION

Mood and emotion are central constructs in the assessment of an individual’s mental well-being. While it is

typical for healthy individuals to fluctuate between various moods and feelings, a number of mood disorders

are characterized by patterns of persistence or fluctuation in mood. For example, persistent negative affect is a

diagnostic criterion of depression [6], and swings between depressed and elevated mood states are symptoms of

bipolar disorder [3]. In general, for many psychotic disorders and experiences, the ebb and flow of symptoms is

known to covary with changes in mood and affect [6, 55, 59].
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In addition to being a core criterion for many mood disorders, certain patterns of daily mood may also be

important for predicting the onset of mood and psychiatric disorders. For instance, a number of studies have observed

that individuals who show abnormally unstable moods are more likely to later develop severe psychosis [17].

Specifically, mood instability may indicate challenges with emotion regulation. Emotion regulation is the process,

which influences the emotional experience of an individual, as well as, how and when she expresses an emotion [35].

Difficulty in regulating emotions, in terms of their intensity or duration is, therefore, theorized to be at the root of

most major psychopathologies [64]. Consequently, measuring mood instability, or frequent temporal changes of

mood, in terms of its two dimensions, valence and arousal [63], is recognized to be critical in understanding causal

pathways between mood and mental well-being, as well as in developing intervention capabilities that can bring

timely help to those in need [63].

However, current capabilities to measure mood instability are limited. To measure mood instability, psychologists

and clinicians have deployed validated survey instruments, such as the Affective Lability Scale [37]. When these

instruments ask people to summarize their emotional experiences from a long segment of time in the past, the data

can be distorted by recall bias and by bias in the process of interpreting and integrating past experience [70]. When

researchers measure affect infrequently, they may further not capture short-term dynamics in mood or the context

of the experience, both of which are needed to fully describe the persistence or instability of mood. Taken together,

these weaknesses can substantially limit the utility of these instruments for the assessment of mood instability.

Since its emergence in the 1970s, a technique known as “ecological momentary assessment” (EMA), has been

increasingly applied to overcome these challenges in questionnaire-based approaches to affect measurement [19,

39, 70]. With EMAs, participants are prompted to respond to survey items sporadically throughout the day as they

engage in typical activities. In fact, in recent work, mobile phone applications have been built to make EMA data

easier to collect and less burdensome for participants [62, 81]. These modern EMA applications can therefore

be considered “active" sensors, in that they require active participation by the individual. While EMA as a form

of active sensing enables capturing affective states in an individual’s natural habitat and uses a direct method to

gather accurate in-the-moment affective information, it requires careful and highly engineered study design, as

well as continual, proactive engagement of the user to answer questions [11]. Therefore, it may be vulnerable

to high participant burden and may result in low compliance when data acquisition is required for extended

periods of time [62, 81]. Researchers have begun to employ various forms of passive sensing [71], such as by

logging an individual’s phone usage and via wearable sensors, to address these limitations [2, 8, 38, 48, 49, 52].

There has been significant success in these sensing techniques when applied in the context of affect and mood

measurement [26, 36, 77]. However, despite the dense, high fidelity data they capture, existing active and passive

sensing paradigms are prone to biases and scalability issues due to resource and logistical constraints, such as cost

and active compliance of the participants [69, 75].

This article introduces a new modality of passively sensed health, social and behavioral data, specifically that

gathered from social media, to overcome some of the challenges noted above. A growing body of work has

employed social media data as a “sensor” to identify markers and assess risk to a variety of different health and

well-being concerns that have social underpinnings, including mood and affective disorders [15, 23]. In the context

of this paper, social media based sensing of moods and their fluctuations over time can capture affective experiences

and behaviors spontaneously, reducing the significant bias impacting affect and mood recognition in controlled

environments [21]. Moreover, social media data, through quantification of language can enable capturing rich

contextual information about mood and its dynamics. However, since sensed data gathered from social media is

often sparse and often does not include gold standard markers of well-being states, research has begun to utilize

it in conjunction with other conventional forms of sensing, such as active sensing [50]. Our work in this paper

extends these early investigations.

Our research objective in this paper examines whether and how high fidelity active sensing data may be

augmented with large-scale, naturalistically-shared social media data to infer mood instability. The computational
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investigations presented in this paper leverage a pilot mobile sensing study within the CampusLife project at

Georgia Tech, that provided access to 1,606 mobile EMAs over five weeks, and a Facebook archive of 13,340

posts from 23 college student participants. We also consider a complementary population experiencing a set of

mental health challenges who can highly benefit from capabilities that enable sensing mood instability, and who,

per literature [3, 18], are likely to exhibit signs of high mood instability. Thus we employ a Twitter corpus of

over 21 million posts from 9,654 individuals who self-reported their diagnosis of bipolar or borderline personality

disorder on the platform. Using a theoretically-grounded quantification of mood instability from EMAs [42, 76],

we make the following contributions:

• A seed classifier to detect binary mood instability status (low, high), utilizing the EMA responses of the

CampusLife participants as ground truth, and psycholinguistic attributes from their Facebook posts as features.

• A semi-supervised machine learning framework to augment the above seed classifier of mood instability by

incorporating data samples acquired from Twitter; specifically, an approach by which the model can learn from

both (scarce) labeled and (voluminous) unlabeled data around mood instability.

• A lexicon of language cues appropriated on Twitter, that are highly indicative of low or high mood instability.

Our results show that the proposed semi-supervised learning approach makes significant contributions towards

exploring how very small samples of actively sensed data can be augmented with large-scale social media data

to detect individuals’ binary mood instability status (low, high), robustly, with 96% accuracy and F-1 score. Our

proposed semi-supervised learning method can detect high mood instability, that, in comparison to a suitable control

population, reveals meaningful linguistic ‘signatures’ in the social expression of Twitter users who self-disclose

to suffer from bipolar or borderline personality disorder. Our method indicates that the bipolar and borderline

personality disorder populations exhibit high mood instability, with almost twice the likelihood of a control

population; an observation aligning with relevant literature in psychology [3, 18].

Through our findings, we demonstrate that we can use social media as a source of passively and unobtrusively

sensed data to identify individuals with high or low mood instability, and can, in fact, significantly augment existing

small-scale active sensing techniques. We situate the implications of our work within precision medicine, around

how multi-sensor integration of signals relating to health can improve our assessments and understanding of

challenging mental health concerns.

2 RELATED WORK

2.1 Mood Instability and Mental Well-Being

The Diagnostic and Statistical Manual of Mental Disorders (DSM) [6] defines mood instability as “marked shifts

from baseline mood to depression, irritability, or anxiety, usually lasting a few hours and only rarely more than a

few days”. In other words, mood instability is a form of emotional dysregulation that is accompanied by extreme,

impairing, and chronic irritability, accompanied by hyperarousal symptoms, such as markedly increased reactivity

to negative emotional stimuli, insomnia, physical restlessness, distractibility, pressured speech, intrusiveness, and

racing thoughts and ideas [54]. Prior work has studied mood instability as a common feature in many mental health

conditions, and it has been associated with poor clinical outcomes [59]. In general, studies have shown that mood

instability for bipolar disorder and borderline personality disorder patients is significantly greater than it is for

healthy controls and individuals with other disorders, such as major depression and anorexia nervosa [3, 18, 59].

For instance, Koenigsberg et al. [47] observed the presence of greater lability in terms of anger, anxiety, and

depression/anxiety oscillation in BPD patients. Furthermore, Henry et al. [40] noted that bipolar patients show

increased reactivity to emotional stimuli during the euthymic period, and such affective dimensions are associated

with the severity of the disorder. These observations motivated the selection of the datasets used in this paper to

build and validate our mood instability inference model.
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However, we also note that the literature also emphasizes the challenges in measuring and characterizing the

experience of mood instability [42, 75]. Structured interviews ask respondents to judge whether they have often

had strong mood shifts within a day over the last 2 to 5 years [6] While as more formal instruments, the Self-Report

questionnaire (MOODS-SR) , the Mood Disorder Questionnaire (or MDQ) [41], and the Affective Lability Scale

(ALS) [37] are frequently used by clinical researchers to quantify affective instability. The ALS, for example, asks

respondents to rate how well a list of statements characterizes the respondent (e.g., “One minute I can be feeling

OK, and then the next minute I’m tense, jittery, and nervous."). However, no time frame is given, nor are any

thresholds provided (i.e., How many times must this experience occur in order for it to be characteristic?). Thus, it

is left to respondents to decide on the time frame for the responses (e.g., Over their lifetime? Over the past year?)

as well as the threshold for endorsement.

These traditional measures of mood instability thus rely on respondents’ retrospective recall and subjective

assessment of affective variability or reactivity on interview or questionnaire items. Regulation of mood being a

complex process [18], these methods are not able to capture the dynamics and context that embodies emotional

experiences. Moreover, it is known that memory of past events is influenced by cognitive processes used to

reconstruct past events. Since existing techniques of measuring mood instability employ retrospective recall,

individuals are more likely to recall or report experiences that seem more personally relevant, that occurred more

recently, that stand out as significant or unusual, or that are consistent with their current mood state [75]. As a

result, an individual may be biased when recalling past events or experiences, and such biases are particularly likely

when an individual is asked to aggregate moods or experiences over time. These may lead to reporting distortion

and subsequently poorer assessment of psychological states.

In essence, these self-reported questionnaire approaches do not consider the three core components of mood

instability: amplitude, frequency, and temporal dependency [42, 76]. In this paper we seek to address some of these

challenges by employing a naturalistic source of mood data, gathered from people’s social media activities.

2.2 Active Sensing of Health States with EMA

Ecological Momentary Assessment (or EMA) has been adopted as a prominent tool for active sensing of behaviors

and moods [70]. In fact, data gathered through EMAs have enabled researchers to study mood variability and

instability over time as well as the dynamic interplay between the environment, personal experiences, and psy-

chopathological symptoms [27, 28]. EMA methods prompt participants to respond to survey items sporadically

throughout the day as they engage in typical activities. EMAs have many advantages over traditional research

designs when investigators are interested in characterizing dynamic, clinically important, psychological pro-

cesses [72, 73]. Additionally, previous research shows benefits of in-the-moment data capturing over retrospective

reports [68]. The ecological nature of EMA assessments has clear advantages as mood processes can be studied in

individuals’ natural habitats, where individuals are subject to the many environmental and interpersonal factors that

typify everyday life but that cannot be recreated in a controlled setting. Moreover, compared with traditional forms

of assessment, EMA is simpler and lesser prone to bias and autobiographical memory. Noting the above strengths,

in a highly relevant study to ours, Wang et al. [78, 79] used mobile EMAs, alongside passive sensing, to gather

rich data about Dartmouth students’ activity, behaviors, mood, depression, and stress, which was then correlated

to academic performance. A number of related studies have appeared in recent years that have utilized EMAs to

reason about and infer health states, specifically around mental wellness [2, 8, 14, 65].

Despite the advantages of EMAs, active sensing poses scalability challenges, because of certain logistical and

economic constraints [69]. In particular, EMA methods impose a response burden on participants due to their

onerous and disruptive nature [74], forcing researchers to trade off between collection of large and comprehensive

datasets regarding their psychological processes of interest and reducing response burden such that participants

will consistently respond to prompts. Thus, reliable collection of excessive EMA items over an extended period of
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time has been noted to be challenging [31], and at the extreme may also require substantial financial compensation

to be successfully achieved. Consequently, there is an emerging need to complement active sensing data sources

with passively sensed data that is captured without explicit participant input. Social media functions as one such

“passive sensor” which can be used to detect and infer mental health concerns. In addition, existing EMA techniques

typically have a bias toward certain contexts. Mobile EMA, for example, favors contexts in which individuals are

readily available to be interrupted, such that an accurate response might be obtained. Social media can alleviate

some of these challenges because of the ubiquitous and naturalistic nature of its use, and because it requires no

additional effort from a participant volunteering data, it can augment EMAs without increasing respondent burden.

Moreover, we note that, to date, only a limited number of empirical studies have utilized EMAs for assessing

mood instability [42]. Notable is the work of Trull et al., who studied mood instability in patients with borderline

personality disorder and depression, using EMAs [76]. Ebner-Priemer et al. also explored the advantages of EMAs

in assessing mood disorders and dysregulation [28]. In this paper, we extend these investigations by examining how

a pilot sample of mobile EMAs can enable inferring mood instability in a large social media population.

2.3 Mental Health Sensing with Social Media

Recent research has demonstrated social media technologies to have a number of benefits as a passive sensing

modality. In particular, it is low-cost, large-scale, non-intrusive to collect, and has the potential to comprehensively

reveal naturalistic patterns of mood, behavior, cognition, psychological states and social milieu, both in real-time

and across longitudinal time [32]. Consequently, considerable research has focused on developing approaches that

can (semi-) automatically assess health and wellness states by employing social media as a ‘sensor’. In an initial

work, we found that Twitter and Facebook based linguistic and emotional correlates for the postnatal course can

characterize and predict postpartum depression (PPD) in new mothers [22] . There have been many investigations

in this emergent area ever since: e.g., mood and depressive disorders [23], post-traumatic stress disorder [16],

eating disorders [9], addictive behaviors and substance abuse [58]. Prior work has also harnessed social media

for analyzing personality traits and their relationship to psychological well-being, through machine learning and

linguistic analysis [66]. Schwartz et al. leveraged the language on social media to predict individual well-being [67].

Further, analyzing moods with the circumplex model of affect [63], our other prior work examined how different

types of moods expressed on social media related to people’s sociability and informational engagement [21].

Despite this growing body of work, one challenge in the analysis of social media data is the limited availability

of gold standard information about individuals’ underlying psychological and emotional states. To address these

limitations, some recent studies have combined social media with active sensing data [50], specifically using the

latter as a source of ground truth. For instance, Lee et al. correlated social media activities of university students

with their mood changes, collected through EMAs [50]. However, outside of this work, to our knowledge, there is

limited research which bridges the gap between active and passive sensing. Part of the challenge stems from the fact

that studies like that of Lee et al. still require a sizable participant population to contribute both EMA and social

media data—a study design difficult to scale. In this paper, we therefore propose an approach which examines how

independently acquired large-scale social media data may be able to leverage small samples of EMA data to build

a robust mood instability classifier. We demonstrate that through this multi-sensor integration approach, we can

analyze the likelihood of mood shifts expressed in the social media feeds of a large population.

3 STUDY AND DATA

3.1 The CampusLife Study

The sensing data employed in this work is derived from a larger mobile sensing study that was conducted in April

2016 involving several college students at Georgia Tech, a large public university in the southeast of the U.S. The

study was approved by the Institutional Review Board at Georgia Tech (#H16009).
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Table 1. Descriptive statistics of the DASS-21

data collected through enrollment question-

naire. Levels inferred per prior work [33].

Level Depression Anxiety Stress

Normal 26 27 26

Mild 5 6 9

Moderate 8 10 8

Severe 3 0 1

Extremely Severe 3 2 1

Table 2. Descriptive statistics of the Facebook seed dataset

collected from 23 participants in the CampusLife study.

Feature count mean median stdev.

Friends 10,578 459.91 372 321.20

Likes 3358 152.64 102 173.22

Profile Pictures 433 18.83 9 18.00

Status 13,340 580.00 294 713.48

Table 3. Descriptive statistics of the EMA

data collected in the CampusLife study.

Metric Value

Number of Participants 51

Number of Responses 1,606

Mean of Responses/Participant 31.49

Median of Responses/Participant 28.00

StDev. of Responses/Participant 21.13

Period of study 5 wks.

Table 4. Descriptive statistics of the Twitter mental health dataset.

Metric Bipolar Borderline Control

Number of Users 6,326 3,328 9,394

Number of Tweets 14,780,813 7,095,801 15,136,451

Number of Tokens 194,801,582 101,397,309 411,656,658

Mean of Tweets/User 2,336.52 2,132.15 1,611.29

Median of Tweets/User 3,398.00 2,858.00 1,131.00

StDev. of Tweets/User 1,310.27 1,374.35 1,432.05
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Fig. 1. Distribution of EMA re-

sponses by the hour of the day.
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Fig. 2. Distribution of number of

users by number of tweets in the

mental health dataset.
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Fig. 3. Comparative statistics of

Facebook seed dataset and Twit-

ter mental health dataset.

Participants. Participants (undergraduate and graduate students at the university) were recruited by word of mouth,

flyers, and social media advertising. In addition, recruitment email messages were sent to students by the registrar

and by instructors of a mandatory course for undergraduates. A total of 51 participants enrolled in a five week-long

study (40% females and 60% males; 46% undergraduates and 54% graduates; mean age 22 years). Similar to the

study conducted within the StudentLife project [78], the smartphones (the Android operating system only) of the

participants were instrumented to collect a variety of actively and passively sensed data: active data were collected

through a commercial EMA platform, called Quedget and passive data were collected through the sensors on board.

Participants also answered different psychological survey questionnaires, during the study. At the end of the study,

participants could also volunteer for a one-time access to their social media data.
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Study Procedure. The CampusLife study consisted of orientation, data collection and exit stages, as also employed

in the StudentLife study [78].

Orientation. At the start of the study (orientation), participants were first required to watch a pre-recorded video

and tutorial developed by the study team that described the research goals of the study, the study procedures, the

types and mechanisms of data collection, the privacy considerations, as well as the risks and benefits involved

in participation. Each participant was then provided with an IRB approved consent form to sign; on signing this

form, participants agreed to allow the research team to acquire active and passive sensing data from their personal

Android smartphones. Members of the research team also familiarized the participants with the EMA software

interface and the procedure for responding to EMA prompts on their phones.

During the study, we sought information on the participants’ intent to share with us their social media data

(through a yes/no survey question). The participants were then directed to an online survey (administered through

Qualtrics) that included a battery of already validated questionnaires to assess their mood, individual differences

(e.g., demographics), and mental well-being status (Perceived Stress Scale (PSS) , Flourishing Scale, and Depression

Anxiety and Stress Scale (DASS-21) [4] ). The purpose of using these questionnaires was to establish baselines

for the mental well-being of the participants: For instance, among the participants who answered the DASS-21

questionnaire, we found notable variation in their psychological well-being, although our study population is not a

clinical one. That is, mapping the responses given on the DASS-21 scale to levels of depression, anxiety, and stress

based on prior work [33], we observed that about 47% of our participants showed above-normal levels of either

depression, anxiety or stress (ref: Table 1). This indicates the presence of sufficient proportion of the population in

which a wide range of expression of mood instability levels may be expected.

Exit Stage. At the time of study conclusion (exit stage), participants who indicated affirmatively about their

willingness to share social media data during orientation, met with the researchers face to face. During this meeting,

they were provided with a second consent form for the social media data collection. This consent form enabled a

one-time download of a participant’s social media, specifically Facebook and/or Twitter archives which we then

de-identified and stored in a secure, encrypted server for the ensuing analysis presented in this paper. Participants

could consent to share both or either of these two types of social media data. All participants were instructed

to bring their laptop computers to this meeting, as a privacy-preserving mechanism to download their Facebook

data. Our choice of Facebook and Twitter as the two social media platforms was driven by statistics from the Pew

Research Center [34], which reports these as two of the most popular platforms in college-aged populations.

Incentives. Participants were given $40 for the time and effort required to enroll in the study and install software

on their phones. Additionally, they were paid in direct proportion for each answered EMA (up to a maximum of

$40). They were given additional compensation if they consented to share any of their social media data, with a

maximum of $40 if they shared all of the social media data we requested. As an incentive to attend the information

sessions in which we introduced the study, we provided food, beverages, and $5 gift cards to those in attendance.

3.2 Sensing Data

Next, in this subsection we describe the data collection methods employed for the purposes of the objectives we

focus on in this paper.

EMA Data. As mentioned above, we collected EMA data from the participants through a platform known as

Quedget. The process of responding to a questionnaire item can impose a burden even before a subject faces the

labor of responding. Consider the potential for annoyance when a time-sensitive prompt demands attention while

one is focused on conversing or on a complex objective [74]. Quedget is designed to use the lock-screen of a

smartphone as a way of gaining attention only when a subject is between operations. On this Android-only platform,

a researcher-defined schedule determines when and which questionnaire item is displayed on the lock-screen of a
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participant’s phone. For the purposes of this study, we defined four mutually exclusive four-hour long time windows

between 9 am and 11 pm, during participants were presented with questions. Within a specific window, Quedget

calculated a random time to trigger the prompt.

Fig. 4. Screenshot

of PAM.

Our EMAs spanned a variety of questions, such as a Photographic Affect Meter (PAM) [62]

(see Figure 4). Psychology literature situates valence and arousal dimensions to comprehen-

sively describe an individual’s affective state at any moment [64], and PAM has been found

to be well-suited for the purpose [62]. The PAM EMA questions showed participants a set of

images ordered in a 4 ×4 grid, where each image corresponded to a mood of specific valence

and arousal (e.g., “angry”, “excited”, “satisfied”, “tired”) – the rightmost top image in the

grid refer to High Valence and High Arousal, whereas the leftmost bottom image refer to

Low Valence and Low Arousal (see Figure 4). Participants could select the image that best

captured their current mood. By the end of the five-week study period, we collected a total

of 1,606 PAM EMA responses spanning all of the participants; that is, for 1606 of the EMA

prompts out of a total of 3220 that were triggered, we were able to log valid responses. The

participants responded to these EMA questions mostly during the period of 9AM to 10PM,

based on the previously described Quedget schedule (ref: Fig: 1). We report the studies of

our PAM EMA data in Table 3.

Social Media Data. At the exit stage of the study, participants who consented in sharing their Facebook data,

downloaded and shared their Facebook profile’s data dump (starting from the data of their account creation to the

date of data collection) as HTML files on their laptops, which they brought to the exit stage meeting. For this, the

participants used a feature provided by Facebook, wherein any user can create a data dump of items shared on their

timeline, as well as all forms of activity that they engage on the platform. To preserve the privacy expectations of

the participants, we asked the participants to personally delete their private messages and all photos from the data

dump created on their laptops. The downloaded and curated data from the participants’ laptops was then stored by

one of the study support volunteers into a detachable hard drive (per the approved IRB instructions), which was

eventually uploaded to a secure, encrypted server. These downloaded Facebook data files were finally parsed, and

timeline activities were extracted (which includes “like” information, friend connections initiated and accepted,

posts about profile pictures, status updates, check ins into different locations, etc.). For the purposes of this study,

our main focus is on the linguistic content of the 13,340 status updates of the participants. Table 2 reports the

statistics of the Facebook Data. In all, out of the 51 participants for whom we had full EMA data, we were also

able to obtain Facebook data for 23 of them. We refer to this dataset of 23 participants in the rest of this paper as

the “seed dataset”.

Further, we identified a set of 10 participants in the above population of 23 who also consented to share their

public Twitter data; that is, they shared their Twitter usernames (or handles) during the exit stage of the study.

Utilizing these handles as query terms, we leveraged Twitter’s official API to crawl all of their posts shared in their

entire timelines1. We refer to this as the “validation dataset”. It contained 1425 posts in all, with a mean and median

of 142.5 and 58.5 posts per participant respectively.

3.3 Twitter Mental Health Data

One of the limitations of the dataset collected through the above CampusLife mobile sensing study was its small

sample size, which presented significant challenges in employing it to build computational models that can detect

levels of mood instability. To circumvent this challenge, and in order to develop inference frameworks for mood

instability on larger scale of social media data, we chose Twitter as a source to augment our existing social media

data gathered through the CampusLife study. Our choice of the Twitter platform was motivated by observations and

1The API returns the last 3,200 posts of a given user, which in most cases of an average Twitter user, covers their entire timeline data.
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Table 5. Search phrase/method for Twitter data collection for three different samples.

Bipolar Borderline Control

“i have bipolar disorder” “i have borderline personality disorder” Twitter stream with en as filter

“i have been diagnosed with bipolar dis-

order”

“i have been diagnosed with borderline

personality disorder”

Remove usernames in Bipolar and Bor-

derline datasets

“i was diagnosed with bipolar disorder” “i have been diagnosed with bpd” Remove user timelines with text contain-

ing ‘bipolar disorder’

“i suffer from bpd” Remove user timelines with text contain-

ing ‘borderline personality disorder’

“i was diagnosed with bpd”

“i am suffering from bpd”

findings in prior work: Due to its largely public nature, in contrast to Facebook, Twitter data has been utilized to

study mental health concerns [22, 23]. This facilitates not only the collection of large-scale data toward studies like

ours, but also, enables identifying and gathering data of individuals who publicly share self-reported diagnosis

of their mental health conditions, such as depression, bipolar disorder, or post-traumatic stress disorder [15].

In the scope of this study, we were particularly interested in augmenting our seed data from Facebook with

complementary Twitter data of individuals who are likely to exhibit a wide range of mood instability. As noted

earlier, two conditions wherein sufferers are known to be challenged by significant mood variability include bipolar

disorder and borderline personality disorder [3, 18, 59]. Our Twitter mental health data collection pursued a strategy

to collect data around these two conditions.

We began this second data collection by separately searching for tweets with the Twitter Search API, wherein

users had made explicit self-disclosure of the diagnosis or experience of bipolar disorder and borderline personality

disorder. These searches were spawned with a set of keyphrases given in Table 5. Our choice of the keyphrases

were motivated from prior work where a similar data acquisition strategy has been successfully applied to identify

populations struggling with a mental illness [15], and where it has been observed that these self-reports do indeed

capture actual clinical conditions as assessed by experts and psychiatrists [24]. Next, for all of these tweets, we

queried the timelines of their authors using the Twitter API, like we did for the Twitter data collection of the

CampusLife participants. Each user timeline refers to a collection of text (capped to a maximum of 3,200) tweeted

by a single user. Using this mechanism, we collected 6,326 and 3,328 user timelines of individuals who disclosed

the diagnosis or experience of bipolar disorder and borderline personality disorder respectively. Hereforth, we refer

to these datasets as Bipolar and Borderline respectively. We also collected an independent sample of tweets using

the Twitter Streaming API, which returns live tweets at a particular time. We repeated our above approach to fetch

user timelines for these tweets; then we filtered out any user who occurred in the datasets Bipolar or Borderline,

or if they mentioned ‘bipolar disorder’ or ‘borderline disorder’ in their tweets. This third sample of filtered user

timelines resulted to 9,394 users and we call this dataset Control in this paper.

Our Twitter mental health dataset finally comprises a total of over 37 million tweets shared by 19,048 unique

users (ref: Fig 2 gives the tweet to user distribution). We report the descriptive statistics of this dataset in Table 4

and a comparative plot of our seed (Facebook) and mental health (Twitter) datasets in Fig 3.

4 METHOD

4.1 Quantifying Mood Instability

We first present our method of inferring levels of mood instability among the participants of the CampusLife

study. Recall that these participants logged their mood via a set of 16 distinct PAM images, arranged in a 4×4 grid,

where valence and arousal increase along the horizontal and vertical axes respectively. We refer to the literature on
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Fig. 5. A schematic diagram showing the computation of the High MI and Low MI classes with EMA data.

PAM [62] to map the 16 PAM moods into numeric tuples of valence and arousal values— these values are derived

from the absolute position of a mood image in the 4×4 grid, where the values can be -2, -1, 1 and 2 [62]. Using

the mapping given in Table 6, we quantify a participant’s momentary mood states in terms of valence and arousal,

which we further leverage to quantify their mood instability.

Specifically, in order to quantify mood instability of a participant, it is necessary to calculate the successive

differences in momentary mood states logged by each of the participants. Since, the consecutive observations for

any participant do not have uniform time differences in our study (EMAs were randomly triggered at different

times of the day), changes or fluctuations in mood cannot be quantified from simple time series analysis of EMA

responses. Hence we adopt a method proposed in [42] to compute the Adjusted Successive Difference (ASD)

functions for the valence (and arousal) dimensions of a participant’s mood. If xi is the valence (or arousal) of a

participant’s logged mood state at time ti , we compute its ASDs based on Equations 1 and 2:

ASDi+1 =

xi+1 − xi

[(ti+1 − ti )/Mdn(ti+1 − ti )]λ
(1)

Here λ is chosen by minimizing the following cost function, sum of square of the error of expectation (SSEE):

SSEE(λ) =
∑
i

[EAASD(ti+1−ti )(λ) −C(λ)]2

=

N−1∑
i=1

{
E

{
|xi+1 − xi |

[(ti+1 − ti/Mdn(ti+1 − ti )]

}
−C(λ)

}2 (2)

The expected absolute successive difference (EASD) is obtained by nonparametric curve fitting regression method

of lowess—a method for fitting a smooth curve [13]. Further, the expected adjusted absolute successive difference

(EAASD) is calculated by an adjustment, which eliminates the dependency of EASD on the time intervals. The

EAASD(λ) at the median time interval is used as the C(λ) (ref: Equation 2).

Once, we have obtained the valence (and arousal) ASD functions of all of a participant’s mood states reported

throughout the study period, we calculate the mean absolute deviation (or MAD) for these functions, referred to as

MAD(ASDv ) and MAD(ASDa), corresponding to the valence and arousal dimensions respectively.

The sum of MAD(ASDv ) and MAD(ASDa) is then referred to as a participant’s overall mood instability MI

throughout the study period—a high MI would indicate that either valence or arousal or both dimensions of their

mood states tend to generally show large fluctuations, whereas lower values of MI would imply one or both of

the dimensions to exhibit fewer shifts over time. Finally, employing the median of the MI distribution over all

participants as a threshold, we categorize the participants into two classes, with binary labels High MI and Low

MI respectively. Those whose MI lies above the median of the MI distribution, we assign them to the High MI

class, while the participants with MI under the median are classified to belong to the Low MI class. We represent
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the steps involved in categorizing users as High MI and Low MI from their EMA data, in Fig. 5, and with the

following equations:

MI = MAD(ASDv ) +MAD(ASDa)

MI Class Label =

{
Low MI if MI ≤ Mdn(MI )

High MI otherwise

(3)

Here we note that median is a conservative, yet intrinsically understandable and robust measure for central

tendency of a distribution. Hence we adopt it as a decision boundary for assessing levels of mood instability in

the participants of our study. Although a more continuous estimate of the distribution would have been a better

quantification of mood instability, it would have made the MI inference task far more difficult, especially in cases

like ours, where we have a small amount of ground truth data.

4.2 Building a Seed Classifier of Mood Instability

Utilizing the above inferred binary levels of mood instability (High MI and Low MI ) in the participants of our

CampusLife study, we now present a classification framework to predict these class labels from the seed dataset,

that is, the participants’ corresponding Facebook data. Although the CampusLife study also acquired Twitter data

from a small set of the participants, we employ Facebook as our data source for the seed classifier as it provides us

with a larger sample of ground-truth labels over Twitter (23 vs. 10 participants).

To build a classifier for mood instability, we first extract psycholinguistic features from the Facebook posts of

the participants—we specifically focus on the status messages shared on their timeline. We employ Linguistic

Inquiry and Word Count, or LIWC [60] on the Facebook posts—this psycholinguistic lexicon has been extensively

applied and validated on several studies of social media, behaviors, moods, and mental health [22, 23]. We use

50 of the most relevant LIWC categories per prior work [23], grouped as: (1) affective attributes (categories:

anger, anxiety, sadness, swear, positive and negative affect), (2) cognitive attributes (categories: cognitive mech,

discrepancies, inhibition, negation, causation, certainty, and tentativeness), (3) temporal references (categories:

future, past and present tense), (4) interpersonal focus (categories: first person singular pronoun, second person

plural pronoun, third person plural pronoun and indefinite pronoun) (5) lexical density and awareness (categories:

adverbs, verbs, exclusive, inclusive and preposition), (6) perception (categories: feel, insight, percept and see),

and (7) social/personal concerns (categories: achievement, bio, body, death, home, humans, sexual and social).

For every participant, we aggregate the occurrence of the word and word stems in each of these LIWC categories,

followed by their normalization based on the total number of tokens (words) in the participants’ posts. Using this

approach, we construct a feature vector of 50 dimensions, for the participants. In the following paragraph we

explain how we build the mood instability classifier.

Now we build supervised machine learning models utilizing the data obtained so far in this section—the ground

truth labels of mood instability (High MI and Low MI ) in the 23 CampusLife study participants (dependent

variable), and the psycholinguistic features extracted with the LIWC lexicon above (independent variables). We

consider and evaluate multiple classifiers, including Naive Bayes, Logistic Regression, Random Forest and Support

Vector Machines (with different kernels such as linear, radial basis functions and polynomial). We employ a k-fold

cross validation (k=5) strategy for parameter tuning.

4.3 Semi-Supervised Modeling of Mood Instability

We note that the number of examples in our seed training data from Facebook (23) is much smaller than the

dimensionality of our feature set (50), which risks the seed classifier C0 in overfitting the data. Semi-supervised

learning is one of the recommended techniques in cases where labeled data is expensive or scarce, but where

unlabeled data is abundant and significantly easy to gather [10]. Unlike completely supervised learning such as
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Table 6. Mapping of PAM categories to

numeric values of Valence and Arousal,

per prior work [62].

PAM Valence Arousal

Afraid -2 2

Angry -1 1

Calm 1 -1

Delighted 2 2

Excited 1 2

Frustrated -2 1

Glad 2 1

Gloomy -2 -2

Happy 1 1

Miserable -2 -1

Sad -1 -1

Satisfied 2 -1

Serene 2 -2

Sleepy 1 -2

Tense -1 2

Tired -1 -2

Algorithm 1: Semi Supervised Mood Instability Classifier

Input: CampusLife Facebook Data F (Seed Dataset), Twitter User

Timelines T (Target Datasets).

Output: Mood Instability MI of Twitter Users

X0, Y0 ← Psycholinguistic Features, Mood Instability of F

T1,T2 ← Random Samples of T {T1 < T2}

X1 ← Psycholinguistic Features of T1
X2 ← Psycholinguistic Features of T2
Classifier C0 ← SVM (X0, Y0)

Clusters < S >← K-Means Clustering (X1)

CD ← Initialize Dictionary < Key,Value >

for every i in K do
cc[i] ← computeVectorCentroid (S[i])

l[i] ← C0.predict (cc[i])

Add < cc[i], l[i] > as < Key,Value > in CD

end

for every i in length(X1) do
label ← Value for S[i] in CD

Add label to Y1
end

X ← concatenate (X0 + X1)

Y ← concatenate (Y0 + Y1)

Classifier C ← SVM (X , Y )

Y2 ← C .predict (X2)

return Y1 + Y2

classification, these approaches devise ways of utilizing both labeled and unlabeled data to learn better models. In

prior work, similar methods have also been used in problem domains where positive examples are a considerably

rare occurrence, creating huge imbalance between the sizes of labeled and unlabeled data [82]. These conditions

satisfy our context as well. Thus we employ a semi-supervised approach of improving the robustness of C0, by

augmenting it with training data from the Twitter mental health datasets (Bipolar , Borderline and Control ).

4.3.1 Establishing Linguistic Equivalence. We note that the above semi-supervised learning approach

involves combining datasets spanning multiple social media platforms (Facebook, Twitter) as well as multiple

populations (college students, general population). Hence, first we conduct two tests of linguistic equivalence to

demonstrate the feasibility of adopting the semi-supervised learning approach. The tests aim to establish that: a)

content shared across the seed and mental health datasets (from Facebook and Twitter respectively) are comparable—

establishing cross-platform equivalence; and b) that social media data of a college population (the CampusLife

participants) may be utilized to measure mood instability in an independent population self-reporting bipolar

or BPD diagnoses (Bipolar and Borderline data), and whose specific demographics are unknown—establishing

cross-population equivalence. For both of these, we adopt an approach involving pairwise comparison of word

vectors, drawing from a suggested technique in the computational linguistics literature [5]. The technique involves

first constructing word vectors using the frequently occurring n-grams in each source of data, and then employing

a distance metric, e.g., cosine similarity, to assess their linguistic similarity. Cosine similarity of word vectors is

an effective measure of quantifying the linguistic similarity between two datasets [61], and a high value would

indicate that the posts in the two datasets are linguistically equivalent.

To establish cross-platform equivalence, we extract the most frequent 500 n-grams from our seed dataset

(Facebook), and the same from our mental health datasets (Twitter) (sample size = 10,000). Next, using the

word-vectors of these top n-grams (obtained from the Google News dataset of about 100 billion words [57]), we
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compute the cosine similarity of the two datasets in a 300-dimensional vector space. We observe that seed and

mental health datasets exhibit high cosine similarity (0.9), providing confidence in the use of the semi-supervised

learning approach. Additionally, we conduct a pairwise equivalence test to validate the linguistic similarity between

the Facebook and Twitter data of the same participants, using the same technique. We do not observe any significant

differences in the manner in which Facebook and Twitter are used in our participant pool – for the 10 participants

for whom we have both Facebook and Twitter data, we noted high similarity (mean 0.85, standard deviation 0.15)

in linguistic attributes (n-grams).

Next, towards assessing cross-population equivalence, we again employ word vector comparison to first assess if

the cosine similarity between the word vectors of the Twitter data of the 10 CampusLife participants and that in the

Bipolar and Borderline datasets is high. We observe this similarity to be 0.94 and 0.95 respectively, indicating that

the college student participants’ social media data is linguistically similar to the unlabeled mental health datasets

we use in our ensuing semi-supervised learning approach.

Finally, in order to assess the correspondence between the psycholinguistic features from the Facebook and

Twitter posts of the same participants, we conduct two-sample Kolmogorov-Smirnov tests (KS tests) for each of

the psycholinguistic features. We observe that the KS-statistic is very low, ranging between 0.01 and 0.38 across

the features (median = 0.07 and standard deviation = 0.08), and only 33 out of 50 features exhibit a p-value lesser

than 0.05. This suggests that there is very little significant statistical difference between the features of Facebook

and Twitter datasets of the 10 participants who shared their data from both the sources.

4.3.2 Augmenting Training Data with Self-Training. Once we have successfully established cross-platform

and cross-population linguistic equivalence, we proceed with our semi-supervised learning approach. We specifically

borrow from a method known as “self-training” that assumes the data to naturally cluster into groups (in our case

we would expect High MI and Low MI to exhibit similarities in their respective behaviors), and therefore employs

a clustering algorithm to categorize the whole dataset, and then label each cluster with labeled data [20].

First, we proportionately separate random samples of 200, 100 and 300 users from our Twitter target datasets,

Bipolar, Borderline and Control . Next, we cluster these users in an unsupervised fashion using K-Means (K=2)

clustering. For each of these clusters, we find the cluster centroids, and machine label the cluster centroids usingC0.

Using the predicted labels of cluster centroids as labels, we augment our training data with 600 additional users

from Twitter. We describe our algorithm of classification in Algorithm 1.

4.3.3 Machine Labeling of Mood Instability in Unseen Data. Now that we have obtained an augmented

training dataset of 623 users (23 from the CampusLife study and 600 from Twitter), we use this to build a mood

instability classifier C. First, based on the method outlined in section 4.2, we extract psycholinguistic features for

the posts of each user in this augmented dataset. Since the volume of posts of the users within the Facebook and

Twitter (seed and target) datasets vary significantly, we scale the feature vectors separately for our Facebook and

Twitter dataset based on standarization (i.e., re-scaling the distribution of each feature to have zero mean and unit

variance [45]). Like before, we build and evaluate multiple classification models, and use k-fold cross-validation

(k=5). Finally, we employ the trained classifier to predict the mood instability labels (High MI and Low MI ) of the

users in the held out target datasets, Bipolar , Borderline , and Control respectively.

4.4 Characterizing the Language of Inferred Mood Instability

This final subsection presents the methods we use for characterizing the language expressed in social media that

relate to High MI and Low MI . Specifically, on the corpus of the posts of all of the Bipolar, Borderline, and

Control users that are labeled or inferred to be of High MI or Low MI , we extract the top occurring most relevant

n-grams (n=1, 2, 3) and compute their Log Likelihood Ratio (LLR) [25] across the two classes High MI and Low

MI. We consider the minimum threshold of occurrence for an n-gram in any class as 500, and then calculate the

probability of occurrence of every such n-gram in the High MI , to the same in the Low MI . The LLR for an
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Fig. 6. Adjusted Successive Difference (ASD) plots of EMAs for three sample participants in the seed dataset.

n-gram is determined by calculating the logarithm (base 2) of the ratio of its two probabilities, following add-1

smoothing [44]. Thus, when an n-gram is comparably frequent in the two classes, its LLR is close to 0; it is closer

to 1, when the n-gram is more frequent in High MI , whereas, closer to -1, for the converse.

5 RESULTS

5.1 Seed Classifier for Mood Instability

In this subsection, we present the results of developing a seed classifier of mood instability, utilizing the Facebook

data of the 23 CampusLife participants, and their mood instability labels (High MI and Low MI ) inferred from

their EMA data during the study period.

To quantify these mood instability labels, we begin by calculating Adjusted Successive Difference (ASD) values

of the EMA responses for each of the CampusLife participants. First, we find λ by minimizing cost function, or sum

of square of successive differences (SSEE(λ)) as defined in Equation 2. For this purpose, we iterate on n = [1, 10],

where λ = 1/n, chosen based on the method described in [76]. Fig. 6 shows the ASD curves for three sample

participants in our study. Per these ASD values, we find that the overall MI of the participants in our study ranges

from 1.65 to 30.8, with a median value of 3.14. Based on our definition of High MI and Low MI given in Fig. 5,

we obtain 11 and 12 users belonging to these two classes respectively.

Next, in order to build a seed classifier for mood instability, we extract frequency of occurrences of the

psycholinguistic categories from the above labeled seed dataset of 23 CampusLife participants. After normalizing

the distribution of these occurrences per the method described in section 4.2, we use them as features and build

several classification algorithms on the binary mood instability labels High MI and Low MI. Table 7 summarizes

the accuracy returned by each of these classification algorithms, including Naive Bayes, Logistic Regression,

Random Forest, and Support Vector Machines (SVM) with different kernels based on k-fold cross-validation

(k = 5). The SVM Classifier with linear kernel returns the highest accuracy (mean = 0.68 andmax . = 0.83). This

motivates our choice for using this as our seed classifier of mood instability. We refer to it as the C0 model.

5.2 Classification with Semi-Supervised Learning

Now we present the results of augmenting the above seed classifier of mood instability (C0) with additional training

data from the target datasets (Bipolar , Borderline , and Control ); for the purpose, we employ the semi-supervised

learning method described in section 4.3.

We build the semi-supervised mood instability classifier, per the method described in section 4.3. Specifically,

we apply KMeans (K=2) clustering on the psycholinguistic feature vectors from a dataset of 600 Twitter users
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Table 7. Accuracy of the seed mood instability clas-

sifier (C0) based on k-fold cross-validation (k=5) on

the seed dataset of 23 CampusLife participants.

Metric mean stdev. median max.

Naive Bayes 0.58 0.54 0.75 0.83

Logistic Regression 0.51 0.35 0.50 0.80

Random Forest 0.48 0.64 0.50 0.83

SVM (Kernel=Poly.) 0.56 0.24 0.50 0.80

SVM (Kernel=RBF) 0.51 0.35 0.50 0.80

SVM (Kernel=Linear) 0.68 0.29 0.75 0.83

Table 8. Augmented training data following K-Means

(K=2) clustering.

Data High MI Low MI Total

CampusLife 11 12 23

Bipolar 120 80 200

Borderline 65 35 100

Control 110 190 300

Total 306 317 623

Fig. 7. A two-dimensional repre-

sentation of the K-Means clusters.

The axes correspond to the two

largest principal components.

Fig. 8. ROC (Receiver Operating

Characteristic) curve of mood in-

stability classifier (C), built with aug-

mented training data.

Fig. 9. Precision-Recall curve of

classifier C, built with augmented

training data. Small slope indicates

good performance.

sampled from Bipolar, Borderline , and Control. Our choice of two clusters is motivated from the observation that

we intend to identify groups of users exhibiting one of the two mood instability labels—High MI or Low MI. We

obtain two clusters with 295 and 305 user vectors respectively. Fig. 7 shows a visual 2-dimensional representation

of these clusters based on the two largest eigenvectors – we use principal component analysis [43] to extract the

eigenvectors of the user vectors in each cluster. We label the centroids of these clusters using the C0 classifier, to

determine the first cluster to consist of users with High MI , while the second to be comprising those with Low MI .

These cluster-labeled data, along with the labeled Facebook data of the 23 CampusLife participants (623 users in

all) becomes our augmented training data (ref: Table 8. This augmented dataset has 306 and 317 users with High

MI and Low MI labels respectively.

Next, with this data, we build multiple classifiers of mood instability, with an SVM classifierC with linear kernel,

yielding the best performance described as follows. We obtain an Area under curve (AUC) of 0.99 for C’s Receiver

operating characteristic (ROC), Fig. 8 shows the ROC curve of C and Fig. 9 gives the precision-recall curve. We

validateC, on the augmented data obtained above, using a k-fold cross-validation (k=5). TheC model gives a mean

accuracy of 0.68 and 0.96 on the seed and augmented training data respectively. We report these performance

metrics in Table 9 and Table 10 respectively, for the seed and augmented training datasets. Based on these numbers,

we infer that our classifierC is stable and works well on the augmented data containing target datasets from Bipolar ,

Borderline , and Control, without dropping accuracy in classifying the seed data of the 23 CampusLife participants.
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Table 9. Performance metrics of mood instability clas-

sification (C) based on k-fold cross-validation (k=5) on

seed dataset of 23 CampusLife participants.

Metric mean stdev. median max.

Accuracy 0.68 0.29 0.75 0.83

Precision 0.66 0.49 0.83 0.88

Recall 0.68 0.31 0.83 0.83

F1-score 0.64 0.38 0.73 0.83

Table 10. Performance metrics of mood instability clas-

sification (C) based on k-fold cross-validation (k=5) on

the augmented data of 623 users.

Metric mean stdev. median max.

Accuracy 0.96 0.09 0.98 0.99

Precision 0.96 0.07 0.98 0.99

Recall 0.96 0.09 0.98 0.99

F1-score 0.96 0.09 0.98 0.99

Table 11. Confusion Matrix of Mood instability classifi-

cation (C) based on users in unseen data from three

different twitter samples.

Data High MI Low MI Total % High MI

Bipolar 3863 2232 6095 63.38

Borderline 1997 1208 3205 62.31

Control 3272 5510 8782 37.26

Table 12. Results of independent sample t-test com-

paring target (Bipolar and Borderline) and control

datasets for mood instability classification.

Data t-stat p

Bipolar 32.97 ***

Borderline 24.13 ***

We now apply the classifier C on the remaining held out target datasets (6095 Bipolar users, 3205 Borderline

users, and 8782 Control users), to machine label them. We report the distribution of the mood instability classifier

C across the three target dataset samples in Table 11. We observe that High MI users occur in about 64% (out of

6095), 62% (out of 3205) and 37% (out of 8782) of the users in Bipolar, Borderline and Control data samples

respectively. An independent sample t-test of the labeled users each from Bipolar and Borderline, with Control

shows statistical significance at the α = .05/n (n = 2) level, following Bonferroni correction (ref: Table 12). In

other words, these numbers indicate that the likelihood of Twitter users self-reporting diagnoses about bipolar or

borderline personality disorders are almost twice as likely to exhibit high mood instability compared to those who

do not self-disclose of these conditions.

5.3 Validation of the Mood Instability Classifier

In order to validate the performance of our mood instability classifier C, we first evaluate its accuracy on an unseen

MI labeled dataset of CampusLife participants. For the 10 participants, who shared their public Twitter feeds within

our CampusLife study, we infer their mood instability (High MI and Low MI ) using classifier C. Comparing these

inferred MI labels with the actual labels of the participants, we observe that C correctly predicts the MI label of 9

of these 10 participants. This affirms the claim that C works satisfactorily across platforms and is able to correctly

infer MI in the population of college students based on their social media data.

Next we additionally validate how our mood instability classifier C improves over the performance of the seed

classifier C0, in essence helping us evaluate the efficacy of our semi-supervised approach, in comparison to a direct

supervised learning approach. For the purpose, we first compare the decision functions2 of the classifiers C0 and

C on their respective training datasets of 23 and 623 individuals. We observe that the mean value of the decision

function obtained for C is 94% higher (1.54 vs. 0.79) than that of C0, showing remarkably higher confidence in its

model fitting. Hence, we conclude that classifier C performs better than C0, on an MI labeled dataset in terms of

model fit and confidence.

2A decision function estimates the confidence score of a training sample, based on the distance of the data points from the hyperplane in an

SVM classifier [7]. These points are referred to as the support vectors (in a vector space, a point can be thought of as a vector between the origin

and that point).
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Second, we infer MI in our unlabeled mental health Twitter datasets, using the k-folds (k = 5) of Classifier

C0 and C. We observe that C0 shows an unstable performance in terms of the accuracy metric, with a standard

deviation of 10.3%, 11.8%, and 8.0% for predicting the percentage of High MI in Bipolar , Borderline and Control

users. On the other hand, C shows a comparatively stable performance for the same numbers with only 0.4%, 0.7%

and 0.3% standard deviation in accuracies respectively. We summarize the comparison values of our two classifiers

in Table 13. Thus, while we do not see a drastic improvement in classification accuracies between C and C0, our

results demonstrate the stability of the semi-supervised learning based classifier C especially in the face of limited

availability of ground truth labeled data.

Table 13. Comparison of MI classification in the mental health Twitter datasets using the seed classifier C0 and the

semi-supervised learning based classifier C. The higher standard deviation (stdev .) in the distribution of k-fold cross

validation (CV) accuracies of classifier C0 shows its high sensitivity (and therefore instability) across different folds.

Data ↓ k-fold CV accuracies of C0 (% High MI ) k-fold CV accuracies of C (% High MI )

Folds → 1 2 3 4 5 mean stdev . 1 2 3 4 5 mean stdev .

Bipolar 66.81 69.86 64.64 43.76 62.82 51.38 10.30 62.87 63.64 62.66 63.18 63.38 63.15 0.39

Borderline 61.37 63.81 54.41 34.04 56.13 45.06 11.76 61.06 61.81 62.44 62.84 62.31 62.09 0.68

Control 42.04 46.05 37.35 24.79 37.94 31.40 7.99 36.70 36.54 36.56 36.47 37.26 36.71 0.32

5.4 Examining Psycholinguistic Features

Next, in order to understand the prominent psycholinguistic features of the C classifier, in Table 14 we summarize

the statistically significant features and their values for the two mood instability classes High MI and Low MI.

Broadly, we note that the mean occurrences of each of the psycholinguistic features is substantially higher in the

timelines of users classified as High MI as compared to those inferred to show Low MI .

To start with, we observe that the features under Affective Attributes, especially anger, negative affect, and

positive affect have significant contribution towards the classification model. This agrees with the intuition that,

individuals having traits of mood instability, express themselves with affective words. To dig deeper into this

finding, we illustrate the class-wise differences in Fig. 10, where we plot the distribution of the different affective

features among users classified as High MI and Low MI . We observe that High MI users show a median score of

0.24, for positive affect, which is substantially higher than 0.04, the median score for the same by the Low MI users.

Additionally, we notice a similar trend in the case of negative affect as well, where the median value observed is

0.20 and 0.03 for High MI and Low MI users respectively.

Returning to other psycholinguistic features described in Table 14, we find that cognitive attributes like negation,

discrepancies, cognitive mechanics, certainty and tentativeness stand out, distinguishing the two mood instability

classes. First, we observe that High MI users show greater usage of cognitive attributes and perception. This finding

aligns with prior work, which associates higher use of cognitive and perceptive words with emotional upheavals,

and self disclosure about psychological conditions [60]. Next, the High MI users show heightened self-attentional

focus as illustrated in the usage of 1st person singular pronoun features; this value is significantly lower in the

case of the users classified to show Low MI . Self pre-occupation is observed in individuals challenged with many

mental health concerns, who in turn, in many cases, may also exhibit high instability in their emotional states [12].

In terms of temporal references, the High MI users show a greater focus on here and now, indicated in the high

usage of present tense words. Further, the occurrences of lexical density features such as verbs and adverbs in

High MI is almost 600% as compared in Low MI , indicating that individuals with higher mood instability tend to

express themselves via more complex narratives, as also known from prior work in psycholinguistics [12].
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Table 14. Psycholinguistic categories and their distribution across the two classes of mood instability. Only significant

features for classifier C are reported here, with their score. Statistical significance is reported after Bonferroni

correction (α = .05/50).

Category High MI Low MI p-value Score

mean stdev. mean stdev.

Affective Attributes

Anger 0.21 0.12 0.04 0.05 *** 33.37

Negative Affect 0.20 0.10 0.03 0.04 *** 31.51

Positive Affect 0.24 0.10 0.04 0.05 *** 35.46

Sadness 0.17 0.08 0.03 0.05 *** 13.57

Swear 0.17 0.14 0.02 0.05 *** 13.57

Cognitive Attributes

Causation 0.18 0.08 0.03 0.04 *** 26.38

Certainty 0.34 0.12 0.05 0.06 *** 50.81

Cognitive Mech 0.39 0.12 0.07 0.07 *** 60.86

Discrepancies 0.30 0.11 0.05 0.05 *** 47.91

Negation 0.33 0.12 0.05 0.06 *** 54.91

Tentativeness 0.20 0.09 0.03 0.04 *** 31.41

Perception

Feel 0.17 0.08 0.03 0.04 *** 24.32

Insight 0.16 0.07 0.03 0.04 *** 21.62

Percept 0.24 0.13 0.04 0.05 *** 40.48

See 0.13 0.07 0.02 0.03 *** 20.87

Interpersonal Focus

1st P. Singular 0.28 0.12 0.05 0.06 *** 46.90

2nd PP. 0.20 0.11 0.04 0.05 *** 26.69

3rd PP. 0.10 0.07 0.01 0.03 *** 15.70

Indefinite P. 0.36 0.12 0.06 0.06 *** 59.35

Temporal References

Past Tense 0.23 0.11 0.03 0.04 *** 39.71

Present Tense 0.41 0.12 0.07 0.07 *** 69.02

Lexical Density and Awareness

Adverbs 0.39 0.13 0.06 0.07 *** 65.03

Verbs 0.43 0.12 0.07 0.07 *** 70.77

Exclusive 0.33 0.12 0.05 0.05 *** 57.33

Inclusive 0.25 0.10 0.05 0.05 *** 37.68

Preposition 0.37 0.13 0.07 0.07 *** 56.78

Social/Personal Concerns

Bio 0.16 0.07 0.03 0.04 *** 21.52

Body 0.17 0.08 0.03 0.04 *** 25.97

Death 0.09 0.07 0.02 0.04 *** 12.98

Humans 0.13 0.07 0.02 0.04 *** 17.12

Sexual 0.12 0.11 0.02 0.04 *** 19.07

Social 0.3 0.11 0.05 0.06 *** 46.18
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Fig. 10. A comparative representation of the distribution of the values of different Affective Attributes in users

classified to be of High MI or Low MI.

5.5 Analyzing Mood Instability on Twitter

Our final set of results include an analysis of the linguistic markers of mood instability as manifested in the

target datasets from Twitter. Table 15 reports the top occurring, most relevant n-grams (n=2) based on their Log

Likelihood Ratio (LLR) across two classes. In doing so, we also investigate whether and how the usage of different

n-grams vary across the classes of mood instability. We observe that certain n-grams reported here, agree with the

distribution of the psycholinguistic features that are significantly distinct across the two classes. For instance, ‘argue’

which occurs predominantly in High MI , is categorized under the social and anger features in the psycholinguistic

lexicon LIWC. In fact, these specific features of anger and social occur almost 6 times more frequently in High

MI as compared to Low MI. This indicates, users in High MI tend to be more expressive and argumentative on

social media, such as “We curse, fight, kiss, hug, We text, talk, argue, laugh, We smile, We love. That’s just us!".

Similar is the case with ‘afraid’, which exists under the anxiety feature in LIWC. We observe that a few phrases

related to pregnancy and child birth, such as ‘baby born’, ‘birth’, ‘feeding’ and ‘pregnant’ are predominant in High

MI . Some example tweets include, “Everyones pregnant or married and I’m..", “looking at my stomach, I can’t

believe I’m pregnant and I’m really having my own baby", “hungry + sleepy is a bad combination for a pregnant

woman.” and “this baby hurting my damn back. im not having any more kids". This concurs with prior literature, on

the association of mood instability with pregnancy related conditions [53]. We also observe the presence swear

words, like ‘fucked’ and words associated with highly negative depressive acts and forms of expression as well as
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Table 15. Log Likelihood Ratios (LLRs) of top 20 n-grams more frequent in the posts of users classified as High MI

(left), Low MI (center) and comparably frequently in both (right).

ngram (High>Low) LLR n-gram (Low<High) LLR ngram (High=Low) LLR

argue 1 finance -1 followed people 0.03

awww 1 fountain pen -1 red 0.04

baby born 1 global investment -1 chocolate 0.04

birth 1 gus music -1 smile 0.04

eyebrows 1 profit -1 healthy 0.04

failed 1 health equity -1 unfollowed automatically 0.04

fall asleep 1 health money -1 followed 0.04

feeding 1 health money bitcoins -1 goodbye 0.04

funding 1 investment plan -1 learning 0.05

hip hop 1 irregular traffic -1 adorable 0.05

hurting 1 management -1 birthday 0.05

playing woman 1 millionaire -1 relationships 0.06

pregnant 1 pension -1 challenge 0.06

pressure 1 perfect money -1 holidays 0.06

racism 1 remixes -1 goodnight 0.06

republicans 1 single mother -1 magic 0.03

suicide 1 fastest investments -1 creative 0.02

fucked 0.41 equity careers -1 lips 0.02

racist 0.49 entertainer -1 thankful 0.01

favorite 0.47 download new -1 thanks 0.01

low self-esteem in High MI , like ‘suicide’, ‘hurting’ and ‘failed’. Example tweets here include, “I can’t believe my

suicide is delayed” and “everybody likes hurting me all the time”

On the other hand, the top n-grams from Low MI, contain some health, career and money related phrases

like, ‘health money’, ‘finance’, ‘perfect money’, ‘entertainer’, ‘equity careers’, ‘millionaire’, ‘pension’. This may

indicate a tendency of Low MI Twitter users to engage in discussing more general life and lifestyle oriented topics,

such as in tweets like, “what would you buy if you became a multi-millionaire overnight”. In other words the

lower presence of these n-grams in High MI may indicate a relatively greater detachment of these users from

the day-to-day realm. In contrast to pregnancy related words in High MI, we find, ‘single mother’ occurs as a

top n-gram in Low MI . Such a contrast interested us, and as we drill down to the corresponding tweets, we find

some expression of disinhibiting opinions and disclosures relating to people’s personal lives, such as “my single

mother worked without a penny from ‘him’ because she changed her lifestyle to be there for me. the real sign

of a mother.”, “of course a woman who was a poor single mother until she worked her way out of poverty can’t

possibly comment.”, “being a single mother works with her being a really independent fierce woman who didn’t

give up her motherhood for her” and campaign oriented tweets such as, “retirement income plan for single mother”.

Among the n-grams which occur almost equally in both the classes, we find quite a few phrases related to greetings,

vacation and occasion, for example: ‘goodbye’, ‘thanks’, ‘birthday’, ‘goodnight’, ‘holiday’ etc. which are typically

expected to surface in many casual social media chatter.

6 DISCUSSION

6.1 Implications

In this paper, we presented a novel machine learning approach for inferring psychological states (mood instability)

of an individual based on their social media data, leveraging dense, high fidelity ground truth information from

an independently acquired active sensor—specifically ecological momentary assessments (EMAs). We further
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demonstrated that the passively gathered social media data can be utilized to build an enriched and scalable mood

instability classifier.

An interesting finding of our work is that the mood instability classifier is able to detect High MI almost twice as

frequently in Bipolar and Borderline Twitter users, compared to a non-clinical control sample. This observation is

consistent with psychology and clinical research that has found these two mental health challenges to be associated

with greater instability and variability in the expression of mood and affect [18]. In particular, Patel et al. analyzed

the health records of individuals seeking mental healthcare, and found that mood instability is most prevalent in

23% and 18% of patients diagnosed with bipolar disorder and personality disorders respectively [59]. The fact

that our results corroborate these previous findings demonstrates the promising performance of our approach in

detecting mood instability status of individuals spanning diverse mental health contexts.

Our work highlights an unconventional, yet creative mechanism to rethink certain study designs within the

ubiquitous computing community. Many of these studies typically employ sophisticated and highly engineered

systems for sensing behaviors, moods, and activities of individuals. Incentives are also needed to be built into

the design to maintain participant compliance while reducing burden. We show that with access to voluminous

naturalistic social and behavioral data gathered from social media unobtrusively and passively, these study designs

may be revisited. Existing sensing frameworks that employ small-scale active data collection could thereby tackle

the challenges of scalability to large populations and to extended periods of time, by utilizing complementary social

media data of the population being studied. Moreover, unlike most active sensing paradigms, we demonstrate that

with social media data, we can leverage access to the rich context within which activities and moods unfold and are

expressed, such as their social and behavioral underpinnings. Such information can be immensely helpful in many

health sensing applications [1], beyond the investigations presented in this paper.

Finally, by borrowing a semi-supervised learning approach from the machine learning community, we build

on the success of these methods as employed in problems in the text mining and computer vision fields [82].

While fully supervised approaches (e.g., regression and classification) are routinely used within the health sensing

community [26, 79], we demonstrate that with a semi-supervised approach, we can promisingly tackle the

challenges around paucity of labeled data (e.g., individuals suffering from a health condition), by incorporating

easily accessible unlabeled examples. Moreover, our findings suggest that a semi-supervised classification approach

improves the performance of a seed fully supervised classifier, both in terms of robustness and confidence, indicating

the applicability of the proposed approach in real-world affect and mood inference tasks, beyond laboratory studies.

Relatedly, we also believe our proposed methodology can be applied in a variety of other health sensing problems

beyond the question investigated in this paper—whether mood instability can be inferred by combining active

and passive sensing data. Especially in health sensing problems within the ubiquitous computing community that

are challenged by limited access to ground truth, however with availability of large-scale unlabeled data, our

semi-supervised learning classification approach can augment current techniques. For instance, to what extent can

high fidelity data on physiological signals of stress (heart rate variability, skin conductance) be complemented with

longitudinal, large-scale social media data? More generally, over half of American smartphone users are reported to

spend an average of 144 minutes per day browsing their mobile devices, aiming to stay socially connected with their

friends [34]. Meanwhile, these users often identify as quantified selfers, which includes measuring and tracking

various signals from a range of wearable sensors (such as heart rate, body acceleration or physical location). Given

the widespread adoption of social media technologies, our work shows how to bridge the gap in observations

between individuals’ online representation and actual physical and emotional status, and how they can mutually

benefit each other in health status sensing tasks.

Broadly, our work advances the vision proposed by Estrin [29] and Zhang et al. [80] around developing

approaches, within the precision medicine context, that can integrate multiple forms of technology facilitated

sensed data into improved understanding of health and wellness. We believe that the integration of EMA and social

media technologies will enable us to better understand the early signs that may indicate forthcoming risk to unusual
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shifts in mood or another adverse health episode. To realize this goal, software infrastructures to enable automated

social media sensing of health, alongside other forms of sensing may be developed, akin to the Aware [30] and

SenSocial [56] frameworks that allows unobtrusive logging of passive data centered around people’s smartphone

activity. Through our work we also envision that novel systems and interventions that can pro-actively monitor risk

to mood instability may be designed and deployed, that can bring appropriate help to those in need. These can be in

the form of self-tracking tools that install greater awareness in individuals struggling with specific mood disorders,

or in the form of interfaces that could be used by clinicians and caregivers so as to direct timely and personalized

help to those in need.

6.2 Privacy and Ethics

Privacy challenges within ubiquitous sensing of health behaviors is well-recognized [46, 51]. Within our work,

we employed the best practices that would guard the privacy of the participants whose data was acquired or

employed in our investigations—including both the pilot CampusLife population, and the individuals whose Twitter

timelines were analyzed. For instance, we maintained the CampusLife data in a de-identified format in a secure

server with authorized researcher access. For the Twitter data, we utilized similar de-identification techniques,

including sanitizing any raw-form data that has been included in the paper for exemplary purposes. Nevertheless,

we recognize that data-intensive studies like ours are vulnerable to privacy and ethical lapses. In the case of social

media population, it is impracticable to gain informed consent from thousands of people, and therefore individuals

may be unaware of the implications of their publicly shared social media content, with regard to their ability to

signal underlying psychological risk. This necessitates developing improved health communication technologies

that can enable individuals glean more interpretable insights into the workings of the machine learning models, and

thereby improve their self-awareness of the health inferences being made.

Thus, we identify open questions relating to privacy and ethics, that would need resolution in the future to fully

realize the potential of integrating social media and other forms of sensing toward health inference. This includes

tackling the challenges of long-term monitoring and people’s perception and attitude regarding their willingness to

donate pre-existing or prospective multi-modal data to researchers.

6.3 Limitations and Future Directions

Our work includes some limitations, many of which suggest interesting directions for future research.

Clinical Relevance. Although we found that a sizable fraction of the participants in our CampusLife dataset showed

moderate to severe depression, anxiety, and stress—markers that are co-morbid with mood instability [76], we

cannot be certain of the clinical nature of mood disorders in this data. In fact, the manner in which we defined

MI levels in participants based on their EMAs may not align with clinical definitions of the phenomenon; our

technique only illustrates a proof-of-concept mechanism to infer MI by combining active and passive sensing data.

Moreover, while were able to build a model that utilizes the EMA data as ground truth labels of mood instability,

and it predicted MI in an independent Twitter population fairly accurately and robustly, it remains to be seen how

the model might generalize to mood instability in other samples, including college students at large, or in clinical

or psychiatric populations. In fact, it is possible that certain clinical populations may have qualitatively different

profiles of affect or affective dynamics that our current model may not be able to identify. Especially with a small

study population like ours, we note that fine-grained levels of mood instability may not be inferrable, beyond the

two-state representation of mood instability we adopted in this paper. In future work, however, in the presence

of richer datasets with larger populations, we believe our semi-supervised learning based approach can be easily

extended to a multi-class classification setting, allowing inferring a range of levels of mood instability.

We further acknowledge that discrepancies exist in the rates of High MI obtained in our bipolar, BPD and

control populations from Twitter, with respect to what is reported in the clinical literature. We note that the Twitter
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mental health population on which we assessed mood instability is a self-identified population, that is, a set of

individuals who self-disclose about their diagnosis or experience of bipolar disorder or BPD on a public social

media platform. In this population, we found that the proportion of high mood instability to be lower, because

some of these individuals may be choosing not to share content that reflects their mood instability, as would be

measurable otherwise in a clinical population. This may be because of stigma concerns, a desire to craft a specific

identity on the social media platform, or for impression management purposes. On the other hand, we also do note

that in the Twitter control population, the rate of high mood instability was greater than in known healthy controls

in clinical studies. We conjecture that could be because this population is not a “true” control when it comes to

including individuals without an actual clinical diagnosis of bipolar or BPD. Future work could investigate these

discrepancies by using ground truth EMA data from a clinical sample, and then corroborating the results with

clinicians and domain experts.

Causal Claims. We suggest caution in deriving causal claims from our analyses, regarding the relationship between

psycholinguistic constructs of social media data, and an individual’s experience of MI . In future work, one could

apply advanced statistical techniques to harness social media data more extensively, such that causal relationships

between mental health conditions and lifestyle attributes could be detected and made actionable towards intervention

technologies and providers. Specifically, an imminent research direction could involve delineating causal pathways

associated with mood instability by aligning multi-level, multi-modal, comprehensive assessments as gleaned from

social media, and active and passive sensing. Then, by temporally aligning social media and sensed attributes,

statistical models may be able to explore dynamics of events around when or how soon an individual is likely to

experience a future episode of significant shift in their mood.

Limitations of Self-Reported and Social Media Data. There are also limitations of self-reported mood data that

may have influenced the accuracy of our results. For instance, any discrepancies between the PAM EMA response

and the subjective experience of affect that it is meant to measure, would distort the data in terms of both valence

and arousal dimensions. Therefore, any future work that improves the accuracy and reliability of these self-report

measures would, in turn, improve the accuracy available through our machine learning technique.

Further, we note limitations in the utility and applicability of social media data in inferring MI status of

individuals. In this paper, we leveraged publicly shared Twitter data of individuals who self-report their diagnoses

of bipolar or borderline personality disorder. Due to the stigmatized nature of these mental illnesses, there might be

a self-selection bias concerning individuals who choose to share their diagnoses of bipolar or borderline personality

disorder publicly on the platform. Self-censorship and impression management related issues may further impact

the manner in which individuals express their underlying behaviors, affect, experiences and other psychological

attributes via language on social media. It remains to be seen in future work how our findings will hold in the context

of alternative social media data sampling mechanisms, such as one in which large populations are collectively

consented to participate in a longitudinal study.

Harnessing Multimodal Data. The CampusLife Consortium is a multi-university endeavor, and this paper is based

on the data collected during our pilot run at Georgia Tech. We have plans to stage more data collection runs in

the near future, possibly recruiting a cohort of incoming freshmen throughout an academic year. Additionally, in

more comprehensive modeling of health and well-being, we are interested in including other passively collected

smartphone and wearable sensing based data, such as stress, conversational interactions, activities, and geo-location,

alongside social media. The StudentLife project [78, 79] indicated that such multi-modal sensor data can be

collected in a student population, and we hope to extend these investigations further within the context of precision

medicine.
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7 CONCLUSION

In this paper, we provided a machine learning technique that uses social media data as a passive, unobtrusive sensor

for inferring mood instability, alongside actively sensed data given by EMAs. Specifically, we first developed a seed

classifier that utilized EMAs from a mobile sensing study as ground truth data to predict binary mood instability

status of individuals from their Facebook content. We then augmented this classifier to improve its robustness

and reduce overfitting, by adding independently obtained public data samples from Twitter. On evaluating this

augmented classifier on unseen populations of Twitter users who self-disclose suffering from bipolar and borderline

personality disorders, we found that our model predicts over 60% of these users to exhibit signs of heightened mood

instability; proportions of which are only 37% in a comparable control population from Twitter. Our work will

make available the first comprehensive lexicon of linguistic terms that tend to be highly prevalent in the expression

of individuals with high or low mood instability. In conclusion, we believe that our work advances the health

sensing research agenda by introducing a new modality of pre-existent, large-scale sensor data—social media,

which can significantly improve the modeling and inferential capabilities of small-scale active sensing frameworks.
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