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ocial media such as Twitter have created
slalalfurms for people to broadcast informa-
tion, thoughts, and feelings about their daily lives.
Since Twitter messages (called frweets) often reflect
in-the-moment updates, they're filled with use-
ful observations and information about the larger
world. Researchers have examined a range of ap-
plications based on tweets, ranging from polit-
cal polling! to earthquake monitoring,® that have
demonstrated Twitter’s ability to deliver fast,
cheap, and reliable tools for monitoring real-world
events.

These successes have drawn interest from the
public-health community, whose goal is to study
the health of a population and develop policies
that improve health outcomes. Traditionally, this
requires expensive, time-consuming monitoring
mechanisms, primarily surveys and data collec-
tion from clinical encounters. Even high-prionity
projects, such as the US Centers for Disease Con-
trol and Prevention's (CDC’s) FluView program
that tracks the weekly US influenza rate, are still
slow because they require clinical data aggrega-
tion. Twitter and other social media could reduce
cost and provide real-time statistics about public
health.

Recent work in machine learning and natural
language processing has studsed the health con-
tent of tweets and demonstrated the potential for
extracting useful public-health information from
their aggregation. This article examines the types
of health topics discussed on Twitter, and how
tweets can both augment existing public-health ca-
pabilities and enable new ones. I also discuss key
challenges that researchers must address to deliver
high-quality tools to the public-health community.

Discovering Health Topics on Twitter
Twitter’s size and breadth make it difficult to de-
termine exactly which types of public-health
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work it can support. Initial work in my research
group’* explored health-related tweets and topics
on Twitter through the development of new com-
putational models. Because many public-health ac-
tivities are disease-oriented, we developed a model
that discovered diseases (ailments) from raw tweets
for guided exploration, rather than relying on pre-
defined illnesses. We used supervised learning to
filter tweets and find health-related messages,
yielding 1.6 million English health tweets from
March 2009 to October 2010.

To explore these tweets, we developed the Ail-
ment Topic Aspect Model (ATAM), a probabilistic
graphical model for uncovering ailments.’ ATAM
assumes that each message discusses a single ail-
ment, manifested through the message's words,
and associates three types of words (general dis-
ease words, symptoms, and treatments) with ail-
ments. For example, the message “fever + head-
ache = flu, home sick with Tylenol” discusses
influenza, where “fever™ and “headache™ are
symptoms, “Tylenol” a treatment, and “flu” a gen-
eral word associated with the ailment.

Human annotators labeled 15 ailments discoy-
ered by ATAM, including headaches, influenza,
nsomnia, obesity, dental problems, and seasonal
allergies. Examining the words, symptoms, and
treatments most associated with each ailment,
and the groups of messages that discuss each
ailment, can support a variety of public-health
initiatives,

Augmenting Existing

Public-Health Capabilities

A core capability of public-health programs, bio-
surveillance monitors a population for adverse
health events, which include expected seasonal
events, such as influenza or environmental aller-
gies, disease outbreaks, such as the HINT virus,
and other health threats, such as food poisoning
or a biochemical contaminant. Surveillance is the

1541-1672/12/$31.00 © 2012 |EEE

Publiched by the IEEE Cowpater Society



Figure 1. The rate of Twitter messages about seasonal allergles for June 2010,
Messages were automatically coded using a machine-leaming method and geo-
located based on user-provided location. Overall shading indicates significant
allergy messages, showing the heart of allergy season, States in the Northeast
and Midwest are particularly active, Dashed states had insufficient data.

Figure 2. A word cloud visualization showing the words most assoclated with

the ailment “insomnia™ as discovered by a machine-learning model that examined
1.6 million tweets related to health, Larger fonts indicate more related terms, blue
indicates general terms, red highlights symptoms, and green represents treatments.
General words such as “hours,” “awake,” and “tired™ characterize iInsomnia
messages, with symptoms such as “nightmares” and “yawning” and treatments of
“Benadryl” and “sleeping pills.”



Social Media Derived Behavioral and Affective Markers
Predict Postpartum Changes

(De Choudhury, Counts, Horvitz, CSCW 2013; CHI 2013)



Social Media Derived Behavioral and
Affective Markers Predict Postpartum
Changes
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(Saha and De Choudhury, PACM/CSCW 2018)

Measuring Levels of Acute Stress in College

Campuses with Social Media
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Oct 31, 2012 Mar 18, 2013 Jan 21, 2014 Nov 20, 2014 Feb 10, 2015
Man shoots 4 at A student shoots A student shoots and Gunman open fires Perpetrator kills 3
Halloween Party. himself after kills another in in or near Library. members of a
threatening his classroom. Muslim family.
roommate.

University of Central Purdue University Florida State University

Florida l I
Massachusetts Institute University of California,
of Technology Santa Barbara

April 18,2013 May 23, 2014
Campus Police Isla Vista tragedy :

officer shot and 22 year old person
murdered. kills 6 and injures 14.
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University of Southern
California I

University of Maryland

University of North
Carolina, Chapel Hill I

University of Southern
Carolina

Feb 05, 2015
Professor and ex-
wife involved in
murder-suicide.

February 12, 2013
A murder-suicide,
where a grad student
sets several small
fires and then shoots
two roommates.

©

North Arizona University

Oct 09, 2015
Shooting near a
dormitory.

Jun 01, 2016

Murder-suicide
between a
professor and his
ex-student.

University of California,
Los Angeles I

Ohio State University |

Nov 28, 2016
Allegedly Muslim
radicalism based
attack — 14
casualties.




Temporal and Linguistic Patterns of

Stress
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(De Choudhury, Counts, Horvitz, ICWSM 2013; WebSci 2013)

Social media depression index
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Multi-Task Learning for Mental Health
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Abstract

‘We introduce initial groundwork for esti-
mating suicide risk and mental health in
a deep learning framework. By model-
ing multiple conditions, the system learns
to make predictions about suicide risk and
mental health at a low false positive rate.
Conditions are modeled as tasks in a multi-
task learning (MTL) framework, with gen-
der prediction as an additional auxiliary
task. We demonstrate the effectiveness
of multi-task learning by comparison to
a well-tuned single-task baseline with the
same number of pammelers

using Social Media Text
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Detecting depression and mental iliness on social

media: an integrative review

Sharath Chandra Guntuku’, David B Yaden', Margaret L Kern,
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Although rates of di ing mental iliness hy

analysis of social media potentially provides

the past few decades, many cases remain undetected.
Symptoms associated with mental iliness are observable on
Twitter, Facebook, and web forums, and automated methods
are increasingly able to detect depression and other mental
illnesses. In this paper, recent studies that aimed to predict
mental liness using social media are reviewed. Mentally il
users have been identified using screening surveys, their public
sharing of a diagnosis on Twitter, or by their membership in an
enling forum, and they were distinguishable from control users
by pattems in their language and online activity. Automated
detection methods may help to saermfy depressed or otherwise
aterisk through

soclal media, and in the future may complement existing
screening procedures.

? University of Pennsyivania, Philadelphia, PA, United States
“The University of Melbourne, Melboume, Ausiralia

Gorresponding author: Eichstaedt, Johannes G (Johannes. penn@gmail
com)

methods for early detection. If an automated process
could detect elevated depression seores in a user, that
individual could be targeted for a more thorough assess-
ment, and provided with furcher resources, support, and
reatment. Studies to date have either examined how the
use of social media sites correlates with mental illness in
users [3] or attempted to detect mental illness through
analysis of the content created by users. This review
focuses on the latter: studies aimed at predicting mental
illness using social media. We first consider methods used
to predict depression, and then consider four approaches
that have been used in the literature. We compare the
different approaches, provide direction for future studies,
and consider ethical issues.

Prediction methods

Automated analysis of social media is accomplished by
building predictive models, which use ‘features,’ or
wvariables that have been extracted from social media data.
For example, commonly used features include users’
language encoded as frequencies of each word, time of
nosrs and orher variahles (see Fiowre 2) Feamres are
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Predicting Depression via Social Media



Summary

* Cansocial media activities and connectedness predict risk to
major depressive disorder?

* Recruitment of a sample of Twitter users through a survey
methodology over Amazon’s Mechanical Turk
* ~40% provided access to Twitter data

reported onset
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Summary

* Social engagement

e  “Insomnia index” — mean z-score of an individual’s volume of
Twitter activity per hour

 Ego-centric social graph — nodal properties (inlinks, outlinks);
dyadic properties (reciprocity, interpersonal exchange);
neighborhood properties (density, clustering coefficient, two-
hop neighborhood, embeddedness, number of ego components)

* Language

 Depression lexicon —top uni- and bigrams compiled from Yahoo! Answers
category on mental health

* Linguistic style
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Summary
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Summary

Egonetwork measures Depres. class | Non-depres. class
#followers/inlinks 26.9 (0=78.3) | 45.32 (6=90.74)
#followees/outlinks 19.2 (0=52.4) | 40.06 (0=63.25)
Reciprocity 0.77 (0=0.09) | 1.364 (0=0.186)
Prestige ratio 0.98 (0=0.13) | 0.613 (6=0.277)
Graph density 0.01 (6=0.03) | 0.019 (¢=0.051)
Clustering coefficient 0.02 (0=0.05) | 0.011 (0=0.072)

2-hop neighborhood 104 (0=82.42) | 198.4 (0=110.3)
Embeddedness 0.38 (0=0.14) | 0.226 (0=0.192)
#ego components 15.3 (0=3.25) | 7.851 (0=6.294)




Discussion Point |

In this paper, the ground truth was obtained
from Amazon mechanical turk workers.
Anything unique about this population that
may have affected the findings? What would
be alternative ways of recruiting people or
gathering high quality ground truth?



Discussion Point |

Depression is not an online condition, but
one that spans both the online and the
offline life. The paper does not take offline
attributes into their models.

Is there a way to that into account? What
would be the most significant offline
attributes to consider?
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Abstract

We present a machine learning-based methodology capable of providing real-time (“now-
cast”) and forecast estimates of influenza activity in the US by leveraging data from multiple
data sources including: Google searches, Twitter microblogs, nearly real-time hospital visit
records, and data from a participatory surveillance system. Our main contribution consists
of combining multiple influenza-like illnesses (ILI) activity estimates, generated indepen-
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Key Points

Question Can real-time streams of secondary information related to suicide be
used to accurately estimate suicide fatalities in the US in real time?



Discussion Point Il

But are models trained on aggregated
group-level differences useful at the
individual level?



What comes next?




What comes next?e

Social Media + Machine Learning for clinical interventions

Efficacy @
Validity @




SOCIAL MEDIA + MACHINE LEARNING
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Construct Validity: Do the proxy diagnostic signals

objectively and accurately measure what they claim

to measure (clinical mental illness diagnosis)




Theoretical/Clinical grounding: Is what is being measured by

the proxy diagnostic signals

valid in itself?




Proxy data sets: diagnostic signals for
schizophrenia on Twitter

Affiliation Data N =861

Self-reports Data N =412

Appraised Data N =153




Patient’s social media data
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Patient Data

Healthy Control Data
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Methodology: Triangulation

Affiliation Data

Self-reports Data Affiliation Model -

Appraised % Binary classification task:
Self-reports Data Self-report Model D g

> 3 Distinguishing those with

. a < hizophrenia from control

Appraised 5 S schizop
Matched Control Data Self—rsgort Model | < %; populations

3
Schizophrenia -

Patient Data i
Patient Model
Healthy Control Data




Affiliation Model
Self-report Model
Appraised Model

Patient Model

Efficacy

High internal validity
Very low external validity

Cross Validation Testing on patient data
0.89 0.21
0.72 0.48
0.80 0.55

0.72 0.76




Issues with Construct Validity

Affiliation p Appraised B Patient

i'm B -0.825 NegAffect m0.063 | cog mech 1-0.003
stigma BN 0.665 negation M0.074) present 1-0.002
mhchat BN 0.696 present body 1-0.002
body BN 0.729 help : verbs 1-0.002
bipolar B 0.774 thought : social 1-0.002
work 0919 i'm : aux verbs 1-0.002
self mm0.961 die : help 0.0002
social BN 1.109 alone : feeling  10.001
care B 1.111 hard : i 10.002
depression @ EE1.116 cry : 10.002
suicide BN 1.133 body : 10.002
thanks B 1.445 feeling 523 i 10.002
illness B 1.447 verbs : 10.003
help B 1.632 sorry : lifetime 10.005
mental health W 1.866 gonna : attack  80.006




Main Takeaway

If the broader research agenda is to use social media data
to inform clinical decision-making, such as early diagnosis,

treatment or patient-provider interventions, (social media)
data collection and machine learning model
development should happen in context
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Facebook language predicts depression in

medical records
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[» an, the most pr mental illness, is underdiagnosed and
urdlrlnahd_ highlighting the need to extend the scope of current
screening methods. Here, we use language from Facebook posts of
consenting individuak to predict depression recorded in electronic
medical records. We accessed the history of Facebook statuses posted
by B83 patients wisiting a large urban academic emergency de-
partment, 114 of whom had a diagnosis of depression in their
medical records. Using only the language preceding their first
dotumentation of & diagnosis of depression, we could identify
depressed patients with falr acturacy |area under the cwrve
(AuC) = 0,69, approximately matching the accuracy of screening
surveys benchmarked against medical m Restricting Face-
book data ta enly the & ths | preceding the first
documented diagrosts of depresshan yielded a higher prediction s
ouracy (AUC = D.TZ) for those users wiho had sufficent Facebook data,
Significant prediction of future depression status was possible as far
as 3 months bafons its first documentation, We found that language
predictors of depression indude emotional (sadness), interperscnal
(omeliness, hostility), and cognitive (preacoupation with the s, -
mination) processes. Unabinasive depression assessment through so-
chall redia af consenting Individuals may became feasible as a scalable
complement to existing screening and monitoring procedures.

big data | deprassion | sodal media | Facebook | soreening

ach year, 7-26% of the US population experiences de-

presaon (1, 2), of whom only 13-49% receve minimally
acdeguate reatment {3} By 2030, unipolar depressive dsorders
are predicted to be the leading cuse of disability in high-income
coundries (4). The US Preventve Services Task Force recom-
mends sereening adults for depression in cireumstances in which
accurate diagnoss, treatment, and follkss-up can be offered (5).
These high rates of underdiagnosis and dertreatment sugges
that existing procedures for screening and entilying depressed
patsents are madequate. Movel methods are needed 1o identily
andl treal patients with depression.

By using Facebook language data Irom a sample of consenting
patients who presented o a .unglr EMErgemy d.rparlmenl we
built & method e predict the first doe s of a e
ol depresson i the elediromc medical record (EME]. E'n.'\'luus
research has demonstrated the leasbility of using Twatler (6, 7}
and Facebook language and sctivity data to predict depres-
son (8], postparium depression (9), suscidality (100, and post-
trawmatee dress disorder (11, relying om self-report of disgnoses
on Twilter (12, 13) or the participanls” responses 1o screening
surveys (B, 7, 9) o establish participants’ mental health slatus. In
comtrasl Lo Lhis prior work relying on sell-repor, we da

the disgnisic of depression, which pror research hes shown 15 fea-
sibile with moderate accuragy (150 OF the patients enrslled m the
stuchy, 114 hael a diagnosis al deg iom i Lheir medical necards, For
these patients, we determined the date at which the fimt doou-
menlation af a dmgnoss of depression was recordied m the EME of
the hospital systemn. We anabeed the Facebook data genensted
by each wser before this dale. We soughl o simulate a realsie
SCTELTING Socmario, and 3o, lor each of these 114 patients, we iden-
lilked 5 randiom contral patients withowt a diagnisis of depresson m
the EME, exaumining anly the Facebook data they ensated belore the
comepondng depressed patient's st date of o necorded diagnosis
of depression. The allowed @ 1o ampare depressed and control
patients’ dala seross the sime tme span and 1o model the preva-
lemce of depression in the larger populstion {~16.79).

Results

Prediction of Depression. To predict the future dagnoss of di-
presson mibe medical necord, we buill a predicton model by using
the textual content of the Facebook posts, post kength, frequency of
poding, lemporal posting patterns, and demographics (Materal
and Methods), W then evalusted the periommance of this model by
coumparing Lhe probability of depresson estimated by our algonthm
againgl the aclual presence or shsence of depressson for each pa-
el din the medseal record (using 10-fokd erossvalidation 1o avaid
overlitimgh. Vanang the threshold of this probabality s deagnosis

Significance

Depression i disabling and treatable, but underdiagnosed, In
this study, we show that the content shared by consenting
users on Facebook can predict a future ocourrence of de-
pression in their medical records. Language predictive of de-
pression indudes references to typical symptoms, induding

laneli hostility, n il and increased self-
reference. This study suggests that an analysis of social media
data could be used to screen consenting individuals for de-
pression. Further, social media content may paint dinicans to
specific symptoms of depression.
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depression disgnosis by using medical codes from an EMR.

As described by Padrez el al. (14), palients in a single urban
academic emergency department {ED) were asked 10 share sooess
tor their medical records and the statuses from their Facebook
timelines, We wsed depresdon-related Intemational Clasification
ol Diseases (1CDY) codes in patients” medical reconds as e progy for
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Class Exercise

Describe a design idea where we can use
social media based depression (or other
mental health condition like
schizophrenia) predictors to help people.
How would it negotiate privacy and
ethical issues?



Improving "Blanket” Interventions
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Everything okay?
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with thoughts of suicic
here to help: call 1-800

If you are e
CONTENT ADVISORY crisis, conside

Please be advised: These posts may contain - a. or

raphic content .

e anonymously with a trained active listener

For information and support with eating from 7 Cups of Tea.

disorders, visit o _ . _

http:// And, if you could use some inspiration
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Need help? United States:
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National Suicide Prevention Lifeline
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A Taxonomy of Ethical Tensions in Inferring
Mental Health States from Social Media
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ABSTRACT

Powered by machine learning techniques, social media provides
an unobtrusive lens into individual behaviors, emotions, and psy-
chological states. Recent research has successfully employed social
media data to predict mental health states of individuals, ranging
from the presence and severity of mental disorders like depres-
sion to the risk of suicide. These algorithmic inferences hold great
potential in supporting early detection and treatment of mental
disorders and in the design of interventions. At the same time, the
outcomes of this research can pose great risks to individuals, such
as issues of incorrect, opaque algorithmic predictions, involvement
of bad or unaccountable actors, and potential biases from inten-
tional or inadvertent misuse of insights. Amplifying these tensions,
there are also divergent and sometimes inconsistent methodologi-
cal gaps and under-explored ethics and privacy dimensions. This
paper presents a taxonomy of these concerns and ethical challenges,
drawing from existing literature, and poses questions to be resolved
as this research gains traction. We identify three areas of tension:
ethics committees and the gap of social media research; questions
of validity, data, and machine learning; and implications of this
research for key stakeholders. We conclude with calls to action to
begin resolving these interdisciplinary dilemmas.

CCS CONCEPTS

« Human-centered computing — Collaborative and social
computing; Social media; « Applied computing — Psychology;

Michael L Birnbaum
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New York, NY, USA, 10 pages. https://doi.org/10.1145/3287560.3287587

1 INTRODUCTION

Last year, Facebook unveiled automated tools to identify individuals
contemplating suicide or self-injury [75, 62]. The company claims
that they “use pattern recognition technology to help identify posts
and live streams as likely to be expressing thoughts of suicide,’
which then can deploy resources to assist the person in crisis [75].
Reactions to Facebook’s suicide prevention artificial intelligence
(AI) are mixed, with some concerned about the use of Al to detect
suicidal ideation as well as potential privacy violations [86]. Other
suicide prevention Als, however, have been met with stronger public
backlash. Samaritan’s Radar, an app that scanned a person’s friends
for concerning Twitter posts, was pulled from production, citing
concerns for data collection without user permission [54], as well as
enabling harassers to intervene when someone was vulnerable [4].

Since 2013, a new area of research has incorporated techniques
from machine learning, natural language processing, and clini-
cal psychology to categorize individuals’ moods and expressed
well-being from social media data. These algorithms are powerful
enough to infer with high accuracy whether an individual might
be suffering from disorders such as major depression [28, 19, 84,
73, 78], postpartum depression [26, 27], post-traumatic stress [21],
schizophrenia [60, 6], and suicidality [15, 22]. These algorithms
can also reveal symptomatology linked to psychiatric challenges,
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