CS 6474/CS 4803 Social Computing: Methodological Pitfalls

Munmun De Choudhury

munmund@gatech.edu

Week 13 | April 2, 2025

Final Project Office Hours

- All times below are in Eastern Time.
 - Apr 7: 4:30-5:30pm
 Apr 8: 9-10am
 Apr 9: 10-11am
 Apr 10: 6-7pm
- Zoom link for the meeting: tinyurl.com/munmund

April 14, 2025

Trendsetters	12:30-12:38p
AAA	12:38-12:46p
NonprofitSentinmentAnalysis	12:46-12:54p
Not decided yet	12:54-1:02p
SoGa (Social Graph)	1:02-1:10p
787846	1:10-1:18p
the Reddit Team	1:18-1:26p
Team Sport	1:26-1:34p

April 16, 2025

Duality	12:30-12:38p
Hermit CWAB	12:38-12:46p
Pod Squad	12:46-12:54p
Election Echoes	12:54-1:02p
SocialSync	1:02-1:10p
Social Signals	1:10-1:18p
Social Coders	1:18-1:26p
Give Me a Job, Please!	1:26-1:34p
Metabase	1:34-1:42p

Final Presentations of Term Projects

- Scheduled for Apr 14 and Apr 16
- Structure:
 - Introduction (main idea)
 - Background/Motivation/Significance
 - Related Work
 - Research questions/Goals/Objectives
 - Data/Social media platform
 - Approach/Method
 - Results
 - Implications/What you have learned/Conclusion

Examples of many successes...

arXiv.org > cs > arXiv:1204.6441

Computer Science > Computers and Society

"I Wanted to Predict Elections with Twitter and all I got was this Lousy Paper' Balanced Survey on Election Prediction using Twitter Data

Daniel Gayo-Avello

(Submitted on 28 Apr 2012)

Predicting X from Twitter is a popular fad within the Twitter research subculture. It seems both appealing and relatively easy. Among a electoral prediction is maybe the most attractive, and at this moment there is a growing body of literature on such a topic. This is not research problem but, above all, it is extremely difficult. However, most of the authors seem to be more interested in claiming positive providing sound and reproducible methods. It is also especially worrisome that many recent papers seem to only acknowledge those attractive papers I have decided to write such a survey myself. Hence, in this paper, every study relevant to the matter of electoral prediction usic commented. From this review it can be concluded that the predictive power of Twitter regarding elections has been greatly exaggerate research problems still lie ahead.

Comments: 13 pages, no figures. Annotated bibliography of 25 papers regarding electoral prediction from Twitter data

Subjects: **Computers and Society (cs.CY)**; Computation and Language (cs.CL); Social and Information Networks (cs.SI); Physics and Society (physics. Cite as: arXiv:1204.6441 [cs.CY]

te as: arXiv:1204.6441 [CS.CY]

(or arXiv:1204.6441v1 [cs.CY] for this version)

Submission history

Incomplete history of cascade prediction

Who	Predic+ng	Features	Metric	Conclusion		
HongD 10	ls item retweeted?	Topic Models	F1=0.47	Better than baseline		
JendersKN 13	Will item reach some size <i>T</i> ?	Content	F1>0.9	High accuracy		
TanLP 14	Which of two does better?	Wording	Accu=65.6%	Computers are OK		
ChengADKL 14	Will cascade double?	Temporal	AUC=0.88	Predictable		
Lerman, Yang, Petrovic, Romero, Kupavskii, Ma, Weng, Zhao, Yu, etc						

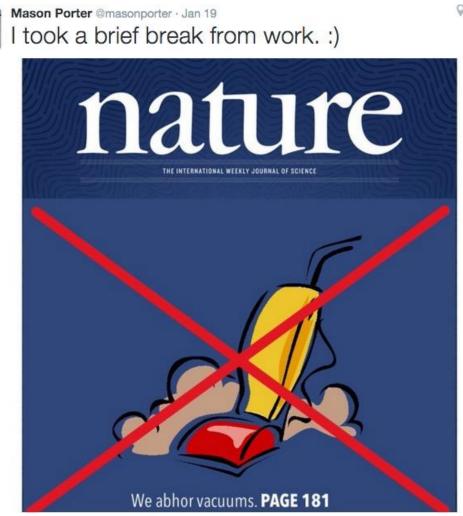
Progress?

All of this work examines a different question with a different measure of success, evaluated on a different subset of data, making it difficult to assess overall progress¹

Predicting success on Twitter?

Bakshy, Hofman, Mason, Watts (2011): How viral will my tweet be?

"Cascades are unpredictable!"



000

43

Reasons behind the inconsistencies

Meaningless comparisons lead to false optimism in medical machine learning

Orianna DeMasi¹, Konrad Kording^{2, 3}, and Benjamin Recht¹

 ¹Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA
 ²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
 ³Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
 odemasi@berkeley.edu, kording@upenn.edu, brecht@berkeley.edu

July 21, 2017

Abstract

A new trend in medicine is the use of algorithms to analyze big datasets, e.g. using everything your phone measures about you for diagnostics or monitoring. However, these algorithms are commonly compared against weak baselines, which may contribute to excessive optimism. To assess how well an algorithm works, scientists typically ask how well its output correlates with medically assigned scores. Here we perform a meta-analysis to quantify how the literature evaluates their algorithms for monitoring mental wellbeing. We find that the bulk of the literature (\sim 77%) uses meaningless comparisons that ignore patient baseline state. For example, having an algorithm that uses phone data to diagnose mood disorders would be useful. However, it is possible to over 80% of the variance of some mood measures in the population by simply guessing that each patient has their own average mood - the patient-specific baseline. Thus, an algorithm that just predicts that our mood is like it usually is can explain the majority of variance, but is, obviously, entirely useless. Comparing to the wrong (population) baseline has a massive effect on the perceived quality of algorithms and produces baseless optimism in the field. To solve this problem we propose "user lift" that reduces these systematic errors in the evaluation of personalized medical monitoring.

Exploring limits to prediction in complex social systems

A unified framework: Luck vs. skill²

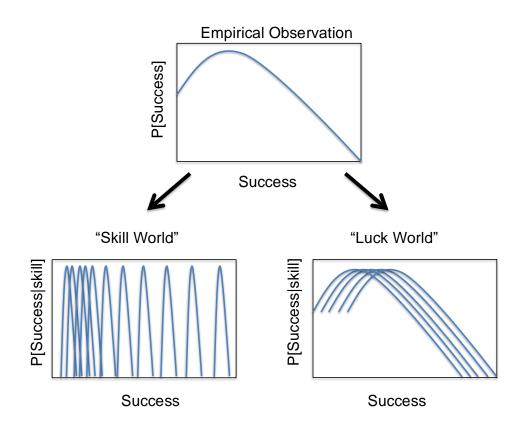
 Model success S as a mix of skill Q and luck

S = f(Q) + -

 Measure the fraction of variance remaining after conditioning on skill:

$$F = \frac{\mathrm{E}[\mathrm{Var}(\mathrm{S}/\mathrm{Q})]}{\mathrm{Var}(\mathrm{S})} = 1 - R^2$$

• $R^2 = 1$ in a pure skill world, $R^2 = 0$ in pure luck world



Data

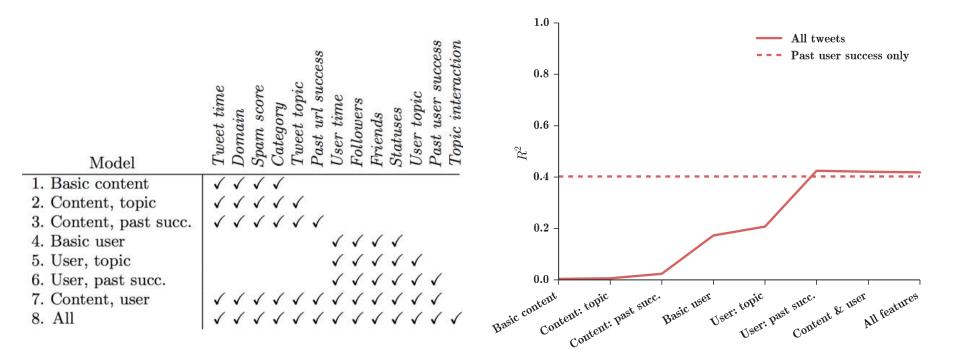
- Examined all 1.4B tweets containing URLs posted in February 2015
- Eliminated spam using internal Microsoft classifier
- Restricted attention to tweets containing URLs from the top 100 English-speaking domains with the most unique adopters
- Resulted in 850M tweets from 50M distinct users covering news, entertainment, videos, images, and products
- Measured the total cascade size for each seed tweet

Predictive features

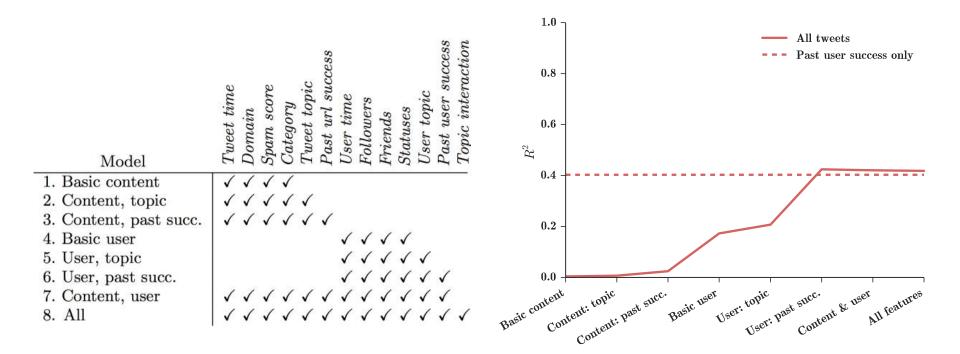
Used a random forest to estimate success (cascade size) given skill (available features)

- Basic content features: URL domain, time of tweet, spam score, ODP category
- Basic user features: number of followers, number of friends, number of posts, account creation time
- Topic features: the most probable Latent Dirichlet Allocation topic for each user and tweet, along with an interaction term
- Past success: the average number of retweets received by each URL and user in the past

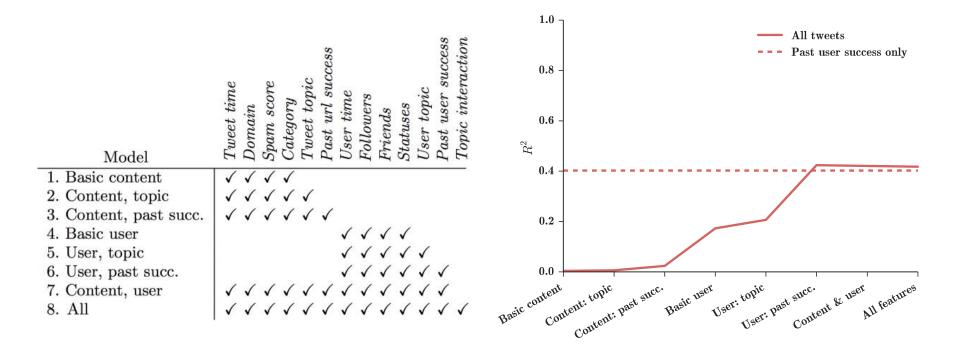
best model explains roughly half of the variance in outcomes



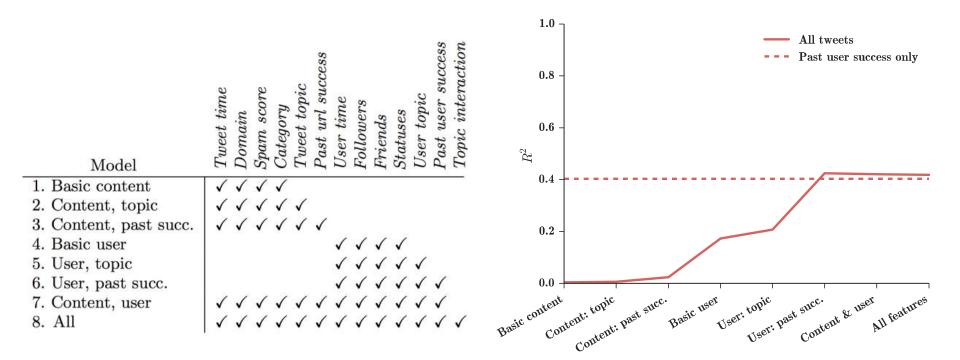
Content features alone perform poorly



Basic user features provide a reasonable boost in performance



Past user success alone accounts for almost all of predictive power



- Both models derive their predictive power from the same simple feature: a user's past success
- Content features are only weakly informative
- Performance plateaus as we add more features, suggesting a possible limit to the predictability of diffusion outcomes

How can you prove a limit?

- Results robust to other ML models

 Decision tree, linear regression
- Consistent with prior work
- Asymptote, dependency between features
- Can't rule everything out
 - Simulation

Simulation

- SIR disease model
- Scale free network similar to Twitter
 - -7M users, ! = 2.05
 - 8B simulated cascades
- Quality: R₀ = average neighbors infected
 p(infect over edge) x mean-degree
- Prediction task
 - Given (possibly noisy) estimate of R_0 and the seed node, predict cascade size

Most things don't spread, but when they do, it's difficult to predict success

Conclusions

Despite a great deal of research on the topic, it's difficult to assess long-term progress in predicting success

State-of-the-art models explain roughly half of the variance in outcomes, based primarily on past success

Conclusions

This is likely due to randomness in diffusion process itself, rather than our ability to estimate or model it Explore Content V Journal Information V Publish With Us V

nature > letters > article

Published: 19 February 2009

Detecting influenza epidemics using search engine query data

Jeremy Ginsberg, Matthew H. Mohebbi ⊡, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski & Larry Brilliant

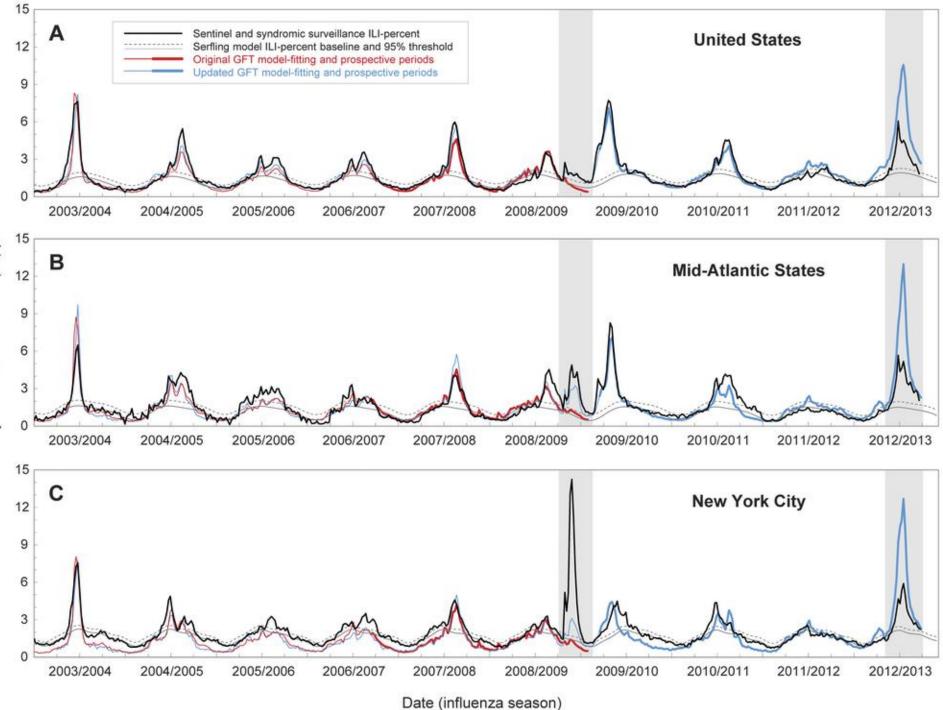
Nature **457**, 1012–1014(2009) | Cite this article

16k Accesses | 2217 Citations | 548 Altmetric | Metrics

i This article has been updated

Abstract

Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year¹. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists



Weekly influenza-like illness (ILI) percent

PLOS COMPUTATIONAL BIOLOGY

🔓 OPEN ACCESS 🖻 PEER-REVIEWED

RESEARCH ARTICLE

Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study at Three Geographic Scales

Donald R. Olson 🖾, Kevin J. Konty, Marc Paladini, Cecile Viboud, Lone Simonsen

Published: October 17, 2013 • https://doi.org/10.1371/journal.pcbi.1003256

Article	Authors	Metrics	Comments	Media Coverage		
*						
Abstract	Abstract					
Author Summary	The goal of influenza-like illness (ILI) surveillance is to determine the timing, location and					
Introduction	magnitude of outbreaks by monitoring the frequency and progression of clinical case incidence. Advances in computational and information technology have allowed for automated collection of higher volumes of electronic data and more timely analyses than previously possible. Novel					
Methods						
Results	surveillance systems, including those based on internet search query data like Google Flu					
Discussion	Trends (GFT), are being used as surrogates for clinically-based reporting of influenza-like- illness (ILI). We investigated the reliability of GFT during the last decade (2003 to 2013), and					
Supporting Information	compared weekly public health surveillance with search query data to characterize the timing					
Acknowledgments	and intensity of seasonal and pandemic influenza at the national (United States), regional (Mid- Atlantic) and local (New York City) levels. We identified substantial flaws in the original and updated GFT models at all three geographic scales, including completely missing the first wave					
Author Contributions						
References	of the 2009 influenza A/H1N1 pandemic, and greatly overestimating the intensity of the A/H3N2 epidemic during the 2012/2013 season. These results were obtained for both the original (2008) and the updated (2009) GFT algorithms. The performance of both models was					

RESEARCH ARTICLE

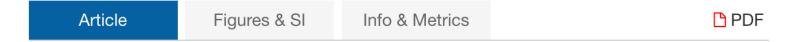
Accurate estimation of influenza epidemics using Google search data via ARGO

Shihao Yang, Mauricio Santillana, and S. C. Kou

+ See all authors and affiliations

PNAS November 24, 2015 112 (47) 14473-14478; first published November 9, 2015; https://doi.org/10.1073/pnas.1515373112

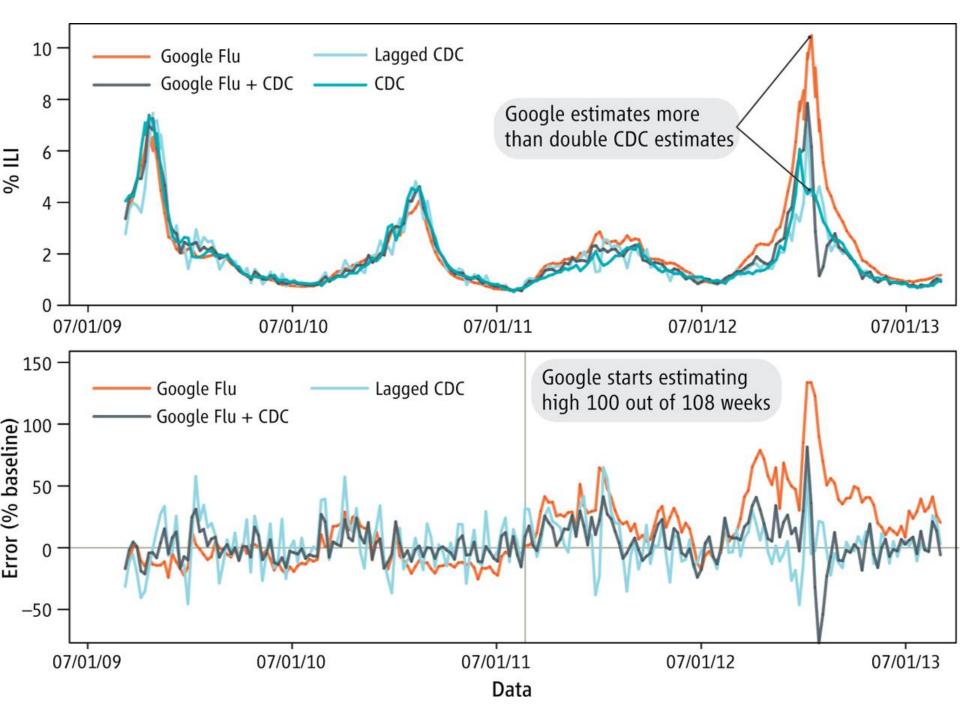
Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved September 30, 2015 (received for review August 6, 2015)



Significance

Big data generated from the Internet have great potential in tracking and predicting massive social activities. In this article, we focus on tracking influenza epidemics. We

The parable of google flu



Big data hubris

Algorithmic Dynamics It's Not Just About Size of the Data

danah boyd & Kate Crawford

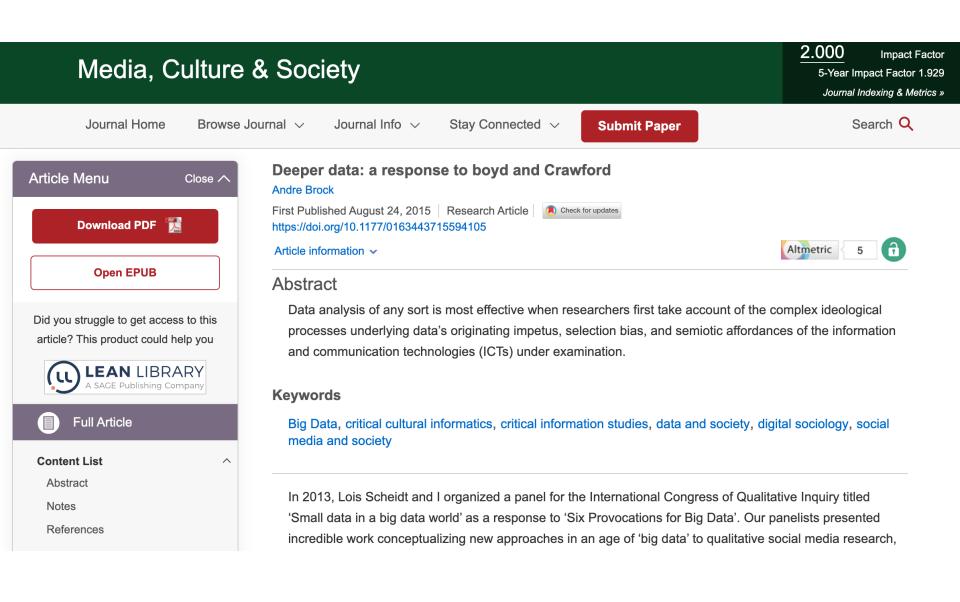
CRITICAL QUESTIONS FOR BIG DATA Provocations for a cultural, technological, and scholarly phenomenon

The era of Big Data has begun. Computer scientists, physicists, economists, mathematicians, political scientists, bio-informaticists, sociologists, and other scholars are clamoring for access to the massive quantities of information produced by and about people, things, and their interactions. Diverse groups argue about the potential benefits and costs of analyzing genetic sequences, social media interactions, health records, phone logs, government records, and other digital traces left by people. Significant questions emerge. Will large-scale search data help us create better tools, services, and public goods? Or will it usher in a new wave of privacy incursions and invasive marketing? Will data analytics help us understand online communities and political movements? Or will it be used to track protesters and suppress speech? Will it transform how we study human communi-

Class Exercise

Assess what "small" data, in each of the following cases might be considered.

- i) Predict how people react on a new product release (e.g., the latest version of iPhone), as observed on social media
- ii) Predict whether greater anonymity leads to greater hate speech on social media
- iii) Predict whether following recommended videos on YouTube leads down a more politically extreme rabbit hole
- iv) Predict whether deplatforming reduces misinformation on social media



Treading with caution

Attention to noise, bias, and "provenance" — broadly, where did data arise, what inferences were drawn from the data, and how relevant are those inferences to the present situation?



Photo credit: Peg Skorpinski

Artificial Intelligence — The Revolution Hasn't Happened Yet

Artificial Intelligence (AI) is the mantra of the current era. The phrase is intoned by technologists, academicians, journalists and venture capitalists alike. As with many phrases that cross over from technical academic fields into general circulation, there is significant misunderstanding

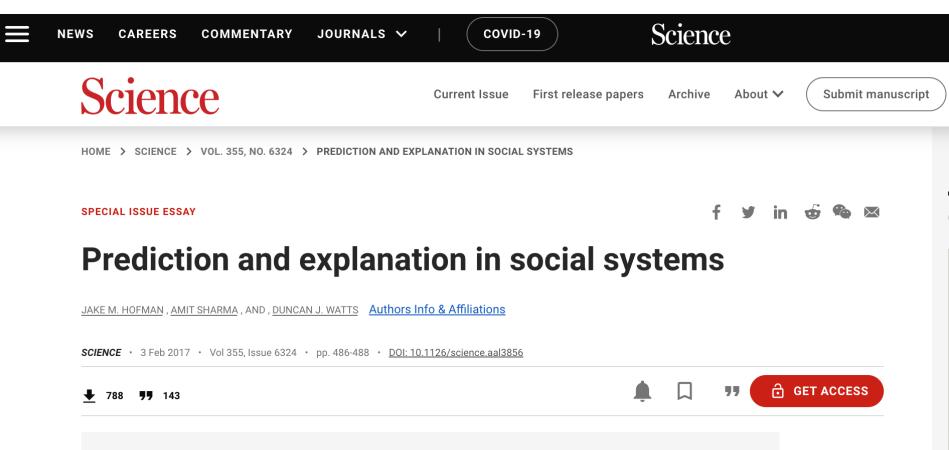
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

Pranav Rajpurkar*, Jeremy Irvin*, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, Matthew P. Lungren, Andrew Y. Ng

We develop an algorithm that can detect pneumonia from chest X-rays at a level exceeding practicing radiologists.

Chest X-rays are currently the best available method for diagnosing pneumonia, playing a crucial role in clinical care and epidemiological studies. Pneumonia is responsible for more than 1 million hospitalizations and 50,000 deaths per year in the US alone.

Predictions wouldn't make us superhumans; in fact we would still need the humans



0

 \sim

ß

Ð

Abstract

Historically, social scientists have sought out explanations of human and social phenomena that provide interpretable causal mechanisms, while often ignoring their predictive accuracy. We argue that the increasingly computational nature of social science is beginning to reverse this traditional bias against prediction; however, it has also highlighted three important issues that require resolution. First, current practices for evaluating predictions must be better standardized. Second, theoretical limits to predictive accuracy in complex social systems must be better