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Social pathways to care



Topical coherence improves following a social media disclosure of a diagnosis of schizophrenia

(Ernala, Rizvi, Birnbaum, Kane, De Choudhury, CSCW 2018)

Social media self-disclosures of mental illness yields 
therapeutic benefits



• Readability improves following a social media disclosure of a diagnosis of 
schizophrenia

• Linguistic complexity increase following a social media disclosure of a diagnosis of 
schizophrenia

• Repeatability decline following a social media disclosure of a diagnosis of 
schizophrenia

(Ernala, Rizvi, Birnbaum, Kane, De Choudhury, CSCW 2018)



Media Health Support in Social Media Alleviates 
Risk of Suicidal Ideation 

(De Choudhury, Kiciman, Dredze, Coppersmith, Kumar CHI 2016)
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Comments 
related to esteem 
or network 
support tend to 
reduce one’s risk 
to suicidal 
ideation in the 

future

(De Choudhury and Kiciman, ICWSM 2017)

Propensity score matching on linguistic data in comments
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Instagram Data Donation System Architecture
(Razi, AlSoubai, Kim, Naher, Ali, Stringhini, De Choudhury, Wisniewski; CHI EA 2022)



Image credit: Mozilla

(Kim, Razi, Alsoubai, Wisniewski, De Choudhury; ICWSM 2024, forthcoming)



Dataset
u Dataset of Instagram data archives downloaded 

and donated by youth participants
u All participants were verified

§ Aged 13-21
§ Had active Instagram account during their teenage 

years
§ At least 15 direct message conversation of which at 

least two were deemed unsafe

u Each participant self-flagged the private message 
conversations on a message level, identifying 
messages that they felt contained online risk

(Kim, Razi, AlSoubai, Wisniewski, De Choudhury; ICWSM 2024, forthcoming)



Approach
(Kim, Razi, AlSoubai, Wisniewski, De Choudhury; ICWSM 2024, forthcoming)



Approach
u Difference-in-Differences (DID) 

analysis
u Quasi-experimental approach to 

compare the convergence pattern 
of the treatment group to that of 
the control group

u Examine the difference between 
pre-OH/post-OH in the treatment 
and control groups

(Kim, Razi, AlSoubai, Wisniewski, De Choudhury; ICWSM 2024, forthcoming)



Harassment Increases Mental Health 
Concerns
u Absolute magnitude of change was greater in the 

treatment group compared to both control groups
u Larger fluctuation of mental health expression z-

scores in treatment group
Days D_tr D_wc D_bc D_tr-D_wc D_tr-D_bc

7 0.1542 -0.31312 -0.00096 0.46732 0.15516
14 0.11036 -0.28799 0.02534 0.39835 0.08502

21 -0.00958 -0.27335 0.01196 0.26377 -0.02154
28 0.00910 -0.18009 0.01802 0.18919 -0.00892

(Kim, Razi, AlSoubai, Wisniewski, De Choudhury; ICWSM 2024, forthcoming)



Harassment 
Increases Mental 
Health Concerns

of the other groups. Through the DID analysis, we found that
the DID between the treatment group was uniformly higher
than those of both of the control groups across n = 7, 14
day time windows. As can be seen in Table 5, we found that
the DID between the treatment and the within-subjects con-
trol was relatively higher (0.1542� (�0.31312) = 0.46732
and 0.11036 � (�0.28799) = 0.39835) than that between
the treatment and the between-subjects control (0.1542 �
(�0.00096) = 0.15516 and 0.11036�0.02534 = 0.08502).
The DID between the treatment group and the control groups
persist throughout the time window of 14 days. Using time
windows of 21 and 28 days revealed that although the gap
between the treatment group and the within-subjects control
group remained favorable and demonstrated a declining pat-
tern, the positive gap between the treatment group and the
between-subjects control group seemed to diminish.

Next, using the OLS regression modeling approach (ref.
Methods), we further validated the statistical significance of
our DID analysis. By examining the variables dependent on
both the time (pre- or post-OH periods) and presence (OH
present or absent), we were able to observe that the impact
of OH on the MHE outcomes were statistically significant
(p < .05).

Unpacking these results further, we generated a tempo-
ral graphs of the MHE z-scores of the treatment, within-
subjects control, and between-subjects control group to ex-
amine relative differences in their trend surrounding the re-
ceipt of a real or placebo OH message.

To construct the figures, each message’s MHE z-score
was first grouped in relation to the temporal distance
from the timestamp of real or placebo OH message.
Then we averaged the z-scores grouping by the number
of days between each message and the real or placebo
OH message. We used spline interpolation to illustrate
the change of average z-scores and also fit a linear line
to show the linear trend of the z-scores. The treatment
group showed an increase in both the slope and inter-
cept (-0.03897-(-0.05114)=0.01217 for slope and 0.36941-
(-0.0346)=0.43102 for intercept) for the time window of
n = 7. The within-subjects control and between-subjects
control both showed a decrease in the slopes (-0.00558-
0.00186=-0.00744 for within-subjects control and -0.00133-
0.00255=-0.00389 for between-subjects control). The in-
tercept slightly increased for the within-subjects control
(-0.08076-(-0.09283)=0.01207) while the between-control
group showed a decrease (0.06997-0.07928=-0.0093). For
the case where n = 14, the slope of the treatment group
exhibited a negative change, while the intercept increased.
Specifically, the slope decreased from -0.0313 to -0.00901,
resulting in a difference of -0.02229, and the intercept in-
creased from 0.30791 to 0.35694, a difference of 0.04903.
The within-subjects control showed increase in both the
slope and the intercept (-0.00018-(-0.00383)=0.00364 for
slope and -0.11826-(-0.14085)=0.02259). The between-
subjects control, similar to the treatment group, showed a
decrease in slope with an increase in intercept (-0.00474-
0.00129=-0.00603 for slope and 0.13175-0.1023=0.02945
for intercept). It is noteworthy to mention that the abso-
lute magnitude of change was greater in the treatment group
compared to both control groups. In Figures 4 and 5, a sharp

Figure 4: Temporal graph of the MHE z-scores of messages
of the treatment (top), within-subjects control group (mid-
dle) and between-subjects control group (bottom) for a time
window of 7 days.

increase in MHE z-scores was observed in the treatment
group on the day before throughout the day after the online
harassment message, whereas both control groups showed a
comparatively smaller fluctuation of MHE z-scores. We also
note the general trend of decrease in the treatment group fol-
lowing the initial sharp increase, which is consistent with the
clinical observation that individuals are resilient to the influ-
ence of traumatic events and can recover from such event as
time passes (Butler et al. 2009).

Posthoc Contextualization of the DID Findings To fur-
ther add context to the DID analysis results, we adapted
the approach from Saha and De Choudhury (2017) and ex-
tracted the n = 1, 2, 3-grams from the messages sent in the
n = 7, 14 days after the online harassment message and cal-
culated their Log Likelihood Ratio (LLR) with respect to
their occurrences in the messages sent before the online ha-
rassment message. The LLR for each n-gram was calculated
using a base 2 logarithm of the ratio of its two probabilities,
each of which add-1 smoothing was applied. A higher LLR
indicates that the n-gram is more frequent in the post-OH
period while a lower LLR shows that the n-gram is more
frequent in the pre-OH period.

Figure 5: Temporal graph of the MHE z-scores of messages
of the treatment (top), within-subjects control group (mid-
dle) and between-subjects control group (bottom) for a time
window of 14 days.

illnesses. A notable strength of our work is that we validated
our approach using participants’ own assessment of their
mental health, recorded via standardized questionnaires. We
consider this validation approach to be more theoretically
grounded compared to prior approaches where self-reported
diagnoses (e.g., “I am suffering from depression”) were
taken as standalone ground truth or where third parties an-
notated social media postings for mental health expression.
Ernala et al. (2019) noted these approaches to suffer from
construct validity issues, and advocated for theoretically-
grounded mental health measurement. Here, we achieved
this, in the context of users of private networked spaces
through a range of psychometric instruments.

A victim-centered approach to measurement of impact.
We also offer a novel approach and a first benchmark to
quantify and understand the mental health impact of experi-
encing online harassment. Prior literature in online risk de-
tection in social media platforms have focused heavily on
building and establishing accuracy of automated detection
systems (Kim et al. 2021a; Razi et al. 2021). While this area
of study has flourished over the past with scholars integrat-
ing techniques from natural language processing and ma-

Figure 6: Kernel density distribution of the MHE z-scores
between the treatment and within-subjects control group
(top) and between the treatment and between-subjects con-
trol group (bottom) for a time window of 7 days.

chine learning with theories of social science and behavioral
theories, the majority of these systems are geared towards
detecting the incident–the interaction between the individ-
uals involved ensuing the event–in other words, how the
stakeholders, mainly the victims, could potentially be im-
pacted by said incidents, is less understood. Our work has
addressed this gap, bringing attention to the importance of
assessing how victims of online harassment are impacted by
the online harassment events. The increase in the usage of
words that are indicative of worsened mental health across
different conversations not only demonstrates the direct in-
fluence of negative incidents like harassment on one’s lin-
guistic style and usage but also how the shift in language
spills over across other conversations in a subsequent time
period, beyond the one involving the perpetrator.

Next, in online harassment incidents, people are affected
differently based on the experiences and context of the in-
teractions. A third-party’s perspective on harassment dif-
fers from that of those experiencing harassment (Kim et al.
2021b). Considering how lived experiences influence one’s
perception of negative incidents in online communities, ex-
amining the impact of online harassment provides a deeper
understanding of how victims react to online harassment
messages. Our findings focus not on what the online harass-
ment message is but rather how the victims react, accounting
for each individual’s perception of online harassment.

7 days 14 days

(Kim, Razi, AlSoubai, Wisniewski, De Choudhury; ICWSM 2024, forthcoming)



Harassment Increases Mental 
Health Concerns

Figure 5: Temporal graph of the MHE z-scores of messages
of the treatment (top), within-subjects control group (mid-
dle) and between-subjects control group (bottom) for a time
window of 14 days.

illnesses. A notable strength of our work is that we validated
our approach using participants’ own assessment of their
mental health, recorded via standardized questionnaires. We
consider this validation approach to be more theoretically
grounded compared to prior approaches where self-reported
diagnoses (e.g., “I am suffering from depression”) were
taken as standalone ground truth or where third parties an-
notated social media postings for mental health expression.
Ernala et al. (2019) noted these approaches to suffer from
construct validity issues, and advocated for theoretically-
grounded mental health measurement. Here, we achieved
this, in the context of users of private networked spaces
through a range of psychometric instruments.

A victim-centered approach to measurement of impact.
We also offer a novel approach and a first benchmark to
quantify and understand the mental health impact of experi-
encing online harassment. Prior literature in online risk de-
tection in social media platforms have focused heavily on
building and establishing accuracy of automated detection
systems (Kim et al. 2021a; Razi et al. 2021). While this area
of study has flourished over the past with scholars integrat-
ing techniques from natural language processing and ma-

Figure 6: Kernel density distribution of the MHE z-scores
between the treatment and within-subjects control group
(top) and between the treatment and between-subjects con-
trol group (bottom) for a time window of 7 days.

chine learning with theories of social science and behavioral
theories, the majority of these systems are geared towards
detecting the incident–the interaction between the individ-
uals involved ensuing the event–in other words, how the
stakeholders, mainly the victims, could potentially be im-
pacted by said incidents, is less understood. Our work has
addressed this gap, bringing attention to the importance of
assessing how victims of online harassment are impacted by
the online harassment events. The increase in the usage of
words that are indicative of worsened mental health across
different conversations not only demonstrates the direct in-
fluence of negative incidents like harassment on one’s lin-
guistic style and usage but also how the shift in language
spills over across other conversations in a subsequent time
period, beyond the one involving the perpetrator.

Next, in online harassment incidents, people are affected
differently based on the experiences and context of the in-
teractions. A third-party’s perspective on harassment dif-
fers from that of those experiencing harassment (Kim et al.
2021b). Considering how lived experiences influence one’s
perception of negative incidents in online communities, ex-
amining the impact of online harassment provides a deeper
understanding of how victims react to online harassment
messages. Our findings focus not on what the online harass-
ment message is but rather how the victims react, accounting
for each individual’s perception of online harassment.

Figure 7: Kernel density distribution of the MHE z-scores
between the treatment and within-subjects control group
(top) and between the treatment and between-subjects con-
trol group (bottom) for a time window of 7 days.

Advancing causal investigations of impact of harassment
in private channels. Our work extends prior understand-
ings as it adopts a robust causal inference approach to mea-
suring impact. Previous research has largely relied on ret-
rospective self-reports or correlational approaches, which
may be subject to recall bias or confounding effects and
may not account for baseline mental health status. Cross-
sectional study designs are also often limited in their abil-
ity to establish causality and quantify change. Our DID ap-
proach addressed these issue by utilizing a large, longitu-
dinal dataset of Instagram conversations where individuals
self-reported instances of harassment. Although our work
looked at a relatively short-term in the aftermath of these
incidents towards establishing causality, it is possible these
effects persist over longer periods of time. Future work can
examine these trends of the impacts, ensuring appropriate
privacy protections are adopted in long term longitudinal
analysis of private data.

Finally, our findings not only confirm prior literature that
found connections between online harassment and emo-
tional and psychosomatic problems, social difficulties, and
psychological safety (Duggan 2014; Brody 2021; Aponte
and Richards 2013), the causal direction of this impact may
point to a vicious cycle where experiences of online harass-
ment worsens mental health, and poor mental health further
victimizes these individuals towards future incidents of bul-
lying and hate speech, as Arseneault, Bowes, and Shakoor

(2010) noted. Drawing upon the social amplification the-
ory (Pidgeon, Kasperson, and Slovic 2003), the implications
of this vicious cycle can be threatening to interactions that
happen in private networked spaces. This is because these
channels are often un- or under-moderated and the largely
dyadic form of interactions may mean unavailability of by-
standers who could confront perpetrators or provide help
and support to victims in need. Leveraging our approach to
measure mental health impacts as a benchmark, future re-
search could investigate the nature of this vicious cycle to
inform better design of private networked spaces.

Design Implications for Private Networked Spaces
A restorative justice approach to tackling mental health
harms of harassment. There is almost two decades of re-
search designing automated machine learning tools for ha-
rassment detection online (Kim et al. 2021a), and scholars
have repeatedly emphasized the need for interventions (e.g.,
moderation of perpetrators) inspired by such automated sys-
tems to curb harassment from happening in the first place.
While these efforts are commendable, all machine learn-
ing models are inherently uncertain, and thus detection al-
gorithms, even today, are far from being perfectly accurate
in all contexts, populations, or platforms. With such sys-
tems failing to deliver in certain occasions, victims might
be “left out in the cold” to cope alone without support, per-
haps even with the perpetrator still present in the networked
space without facing any real consequences. Even when the
offenders are “punished” by platforms (e.g., in the form of
banning, blacklisting, or content-removal), such a retributive
approach often leaves out the victim from the delivery of jus-
tice, offering them little to no agency in choosing what pun-
ishment might be the best for their wellbeing. Such neglect
may be perceived to be not just unjust, but our work reveals
that it could have significant negative repercussions due to
victims expressing aggravated mental health concerns fol-
lowing such an often unpleasant, sometimes harmful experi-
ence. Thus, by quantifying the mental health impacts of ha-
rassment, we may be able to mediate and provide support to
the victims. These interventions can take several forms, and
ethical questions abound as to what are appropriate victim-
centered and trauma-informed ways to engage in private net-
worked spaces or redesign them altogether.

Our suggestions for design here draw upon the restorative
justice framework (Van Ness and Strong 2014), where the
idea is “to get offenders to take responsibility for their ac-
tions, to understand the harm they have caused, to give them
an opportunity to redeem themselves, and to discourage
them from causing further harm.” Social media platforms
that include private channels of communication may con-
sider strategies where perpetrators of harassment are given
an opportunity to justify their actions and adopt steps that
could repair their often dyadic private interaction with the
respective victims. Victims, complementarily, could be pro-
vided digital nudges that include resources for coping and
social support, both on the platform (e.g., giving them an
option to connect with a close social tie with whom active
private interactions are present) or elsewhere (e.g., virtual
therapy tools). In addition, under this framework, knowing
that mental health impacts of harassment exist, victims could

7 days 14 days

(Kim, Razi, AlSoubai, Wisniewski, De Choudhury; ICWSM 2024, forthcoming)



 ŵŪƯƛŵş͑ĺƛŵƷƘ

®łñƛğė͑
ŨňƣňŪĹŵƛŨñƯňŵŪ̩

�*�UDGLDWLRQ�ZHDNHQV�
WKH�LPPXQH�V\VWHP��RU�
GLUHFWO\�WUDQVPLWV�
&29,'���
%LOO�*DWHV�LV�EHKLQG�WKH�
FUHDWLRQ�RI�WKH�QRYHO�
&RURQDYLUXV
7KH�6$56�&R9���YLUXV�LV�
D�ELRZHDSRQ�WKDW�
RULJLQDWHG�LQ�D�ODE

/HPRQ�MXLFH�FXUHV�
&29,'���

 �ÙU'̸˭˵͑ƛğşñƯğė͑ŨňƣňŪĹŵƛŨñƯňŵŪ

͑»ǐňƯƯğƛ͑Ʒƣğƛƣ àğƣ

uŵ

»ǐŵ̸şğǏğş͑
Ʒƣğƛ͑

ŨñƯĐłňŪĺ͑
̲Ďñƣğė͑ŵŪ͑Ƙƛňŵƛ͑

ñŪǕňğƯụ̈̄͑ĎğłñǏňŵƛñş͑
ñƯƯƛňĎƷƯğƣ̣͑ñŪė͑
şñŪĺƷñĺğ̸ƛğşñƯğė͑

ĐƷğƣ̳

®ƷĎĺƛŵƷƘƣ͑ŵĹ͑ŨñƯĐłğė͑Ʒƣğƛƣ
̲ƣƷĎĺƛŵƷƘƣ͑ĐŵŨƘƛňƣğ͑ŵĹ͑ƣňŨňşñƛ͑Ʒƣğƛƣ͑ñŪė͑ñƛğ͑ŵƛėğƛğė͑ñƣ͑
Ƙğƛ͑Ưłğ͑ňŪĐƛğñƣňŪĺ͑şňśğşňłŵŵė͑Ưŵ͑ƣłñƛğ͑ŨňƣňŪĹŵƛŨñƯňŵŪ̳

 ŵŨƘñƛňŪĺ͑
ñŪǕňğƯǖ͑ǐňƯłňŪ͑
ğñĐł͑ƣƷĎĺƛŵƷƘ

»ƛğñƯŨğŪƯ͑ĺƛŵƷƘ

AA

��

�

�

�

�

�

��

�
�
��
��
�
�
��
	�
�
�

�
�
��
�
��
�


��
��
��
��
��
�
�
�
	�
�
�
�

�
�
�
�
�
�
�

�������

Average

B

R
el

at
iv

e 
tre

at
m

en
t e

ffe
ct

 in
 a

ll 
su

bg
ro

up
s

B

R
el

at
iv

e 
tre

at
m

en
t e

ffe
ct

 in
 s

ub
gr

up
s

Subgroups (→ propensity score increases)

CC

likelihood to share misinformation increases)

Fig. 1. Causal inference methodology (A) and the effect of sharing misinformation on experiencing anxiety – overall distribution (B) and subgroup-wise values

(C). We illustrate our methodology to study the causal effect of sharing misinformation (treatment) on experiencing heightened anxiety (outcome) (A). We identify users who
shared considerable COVID-19 misinformation on Twitter and assign them to the treatment group, while assigning the ones who did not share any misinformation to the
control group. We then employ a two-level matching strategy to identify similar users across the two groups, using several factors like prior anxiety, other prior mental health
indicators, platform-specific behavioral attributes, and language-related cues. Within each subgroup of matched users, we compare the aggregate anxiety levels of treatment
and control users using their post-treatment Twitter posts to estimate the effect of sharing misinformation. In B, we show a box and whisker plot of relative treatment effect
across all subgroups. The average, first and third quartiles, and the 95% confidence interval all lie above 0. The relative treatment effect in each subgroup and the
95% confidence interval are shown in C. Values that are ° 0 indicate a positive effect of sharing misinformation on anxiety within that subgroup. The subgroups are ordered
as per the increasing likelihood of sharing misinformation (propensity scores). Regardless of the likelihood to share misinformation, in most subgroups, users who shared
misinformation experienced exacerbated anxiety when compared to similar users who did not share misinformation.

for assessing the quality of matching). Matching provided subgroups183

of users who had a similar likelihood to share misinformation and184

could enable meaningful comparison of resultant anxiety across185

users within the same subgroup as they possess statistically similar186

attributes. For a subgroup of matched users, we quantified the187

e�ect of sharing misinformation within that subgroup as the di�er-188

ence of increase in post-treatment/placebo anxiety levels (Aafter )189

with respect to the pre-treatment/placebo anxiety levels (Abefore)190

between users who shared misinformation (trt) and those who did191

not (ctrl). We also computed the relative additional increase in192

the anxiety of users who shared misinformation with respect to the193

increase in the anxiety of users who did not share misinformation194

– i.e., in comparison to the increase experienced by control group195

users, how much additional increase do the misinformation sharers196

experience in their anxiety; see Equation 1. Additional details are197

provided in SI Appendix, section 2.8.198

T Erel
i “

pAtrt
after ´ Atrt

beforeq ´ pActrl
after ´ Actrl

beforeq
Actrl

after ´ Actrl
before

. [1]199

Results200

Figure 1 (B & C ) presents the estimate of the e�ect of sharing201

misinformation on an individual’s anxiety. We find the over-202

all relative treatment e�ect to be 2.011, which demonstrates203

that in comparison to the increase in anxiety experienced by204

individuals in the control group, misinformation sharers expe-205

rienced about two times additional increase in their anxiety206

(Figure 1 B). Additionally, regardless of users’ likelihood to207

share misinformation, the users who shared misinformation208

experienced exacerbated anxiety when compared to those who209

did not (Figure 1 C). We find that the average Cohen’s d210

between the distributions of post-treatment and post-placebo211

anxiety levels across all groups of matched users is 0.59, in- 212

dicating a medium to large e�ect size. An unequal variances 213

(Welch’s) t-test on distributions of post-treatment and post- 214

placebo anxiety outcomes further revealed that the e�ect is 215

statistically significant (t † r´0.31, 7.47s; P † .01). 216

Socio-Demographic Analysis. To understand how the causal 217

e�ect of sharing misinformation on anxiety varies across 218

various socio-demographic dimensions, such as sex, race, and 219

education level, we conducted a series of follow-up analyses 220

on US-based treatment-group users (N=762) and US-based 221

control-group users (N=1198). Since Twitter does not provide 222

any a�ordances to allow individuals to self-report their sex, 223

race, and education level, we inferred these socio-demographic 224

attributes following techniques used in prior work in social 225

computing (45–48). Further details about the inference 226

methods have been discussed in SI Appendix, section 3.1. 227

228Sex and Race. To infer the sex and race of Twitter users who 229

are located in the U.S., we compared the first and last names 230

of individuals against the U.S. Social Security Administration 231

database and the 2010 U.S. census data, respectively. We 232

compared the increase in anxiety experienced by users of a 233

certain demographic category in the treatment group against 234

the increase in anxiety of control group users who belong 235

to the same demographic category – i.e., females in the 236

treatment group versus females in the control group, and so 237

on. As Fig. 2(A) illustrates, we find that females in the 238

treatment group experienced 163.4% increase in the anxiety 239

when compared to the control group (P † .05), while males 240

experienced an increase of 151.72% (P † .05). Furthermore, 241

Verma et al. PNAS | May 19, 2021 | vol. XXX | no. XX | 3

(Verma, Bhardwaj, Aledavood, De Choudhury, Kumar, Nature Scientific Reports)
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COVID-19 misinformation online has caused 
different levels of anxiety in different individuals
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(Online/Offline) Social lives of people 

Management of the illness & recovery

(Ernala, Seybolt, Yoo, Birnbaum, Kane, De Choudhury, CSCW 2022)
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“ I mean, you know, just trying to stay away 
from many things, just like keeping a low 
profile...I meant to just relax [...] It makes 

me have a good plan. Yeah, just like no 
pressure at all.” [P13] 

“ I don’t know what I’m expecting and [how] 
people may react to the news that I’m back, 
and then, bearing in mind that it was difficult 

for them to understand me.” [P8] 

Re-establishing social connections
(Ernala, Seybolt, Yoo, Birnbaum, Kane, De Choudhury, CSCW 2022)
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“I felt as if I was spending too much time on my phone, to the 
point where I was not physically present in the conversation or 
like I just needed time that I wasn’t being bombarded by, you 

know, advertisements, friends from high school doing this, friends 
and colleagues doing this, comparing yourself to other 

people.” [P16] 

“I’ve been trying to avoid Facebook ever since because I will 
admit that some of my triggers come from seeing how other 

people are doing so well and I feel like I’m stuck.” [P12] 

Online social lives intertwined with management of the illness 

Negative aspects of social tech use

(Ernala, Seybolt, Yoo, Birnbaum, Kane, De Choudhury, CSCW 2022)



(Ernala, Seybolt, Yoo, Birnbaum, Kane, De Choudhury, CSCW 2022)
Introduction         Challenges         Intersection of Clinical & Social       Future 60

Re-establishing social connections

Resuming roles/responsibilities

Management of illness

NEEDS

Stigma and inhibition

Reliance on others

Lack of support

CHALLENGES
effects 

on 
social 
lives

Overwhelm

Withdrawal

Shifting goals

Priorities

Introduction         Challenges         Intersection of Clinical & Social       Future 61

social 
tech
use 

Mediating interactions

Spaces for disclosure

Social support

Sources for positive 

behavioral change

Social comparison

Emotional triggers

Negative interactions



Finding Solutions is Hard…
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Some Reflections
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Are we Doing Enough?



“While the web has created opportunity, given 
marginalised groups a voice and made our daily lives 
easier,” he writes, “it has also created opportunity for 
scammers, given a voice to those who spread hatred 
and made all kinds of crime easier to commit.

“It’s understandable that many people feel afraid and 
unsure if the web is really a force for good. But given 
how much the web has changed in the past 30 years, it 
would be defeatist and unimaginative to assume that 
the web as we know it can’t be changed for the better 
in the next 30. If we give up on building a better web 
now, then the web will not have failed us. We will have 
failed the web.” -- Tim Berners-Lee

Daragh Walsh Kennedy


