Optional papers
Language is the most common and reliable way for people to translate their internal thoughts and emotions into a form that others can understand. Words and language, then, are the very stuff of psychology and communication -- Tauszczik & Pennebaker
Diurnal and Seasonal Mood Vary with Work, Sleep, and Day length Across Diverse Cultures
Summary

- One of the early works examining relationship between social media mood and behavior and psychological theories.
Twitter is used by millions and both the papers extensively leverage this source of data in measuring mood and affect.

How does use of Twitter for this purpose address limitations in existing mood or affect measurement methods?
Twitter is used by millions and the paper extensively leverages this source of data in measuring mood and affect.

But could Twitter also have bias?
How do you expect the results relating to mood to be different if the paper used: 1) Facebook 2) Instagram?
Could platform affordances impact specific moods and their manifestations on social media? How?
Experimental evidence of massive-scale emotional contagion through social networks

Adam D. I. Kramer, Jamie E. Guillo, and Jeffrey T. Hancock

PNAS June 17, 2014 111 (24) 8788-8790; first published June 2, 2014 https://doi.org/10.1073/pnas.1320040111

Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved March 25, 2014 (received for review October 23, 2013)

This article has corrections. Please see:
Editorial Expression of Concern: Experimental evidence of massive-scale emotional contagion through social networks
Correction for Kramer et al., Experimental evidence of massive-scale emotional contagion through social networks

Significance

We show, via a massive \(N = 689,003\) experiment on Facebook, that emotional states can
Facebook Tinkers With Users’ Emotions in News Feed Experiment, Stirring Outcry

By VINDU GOEL JUNE 29, 2014

To Facebook, we are all lab rats.

Facebook routinely adjusts its users’ news feeds — testing out the number of ads they see or the size of photos that appear — often without their knowledge. It is all for the purpose, the company says, of creating a more alluring and useful product.

But last week, Facebook revealed that it had manipulated the news feeds of over half a million randomly selected users to change the number of positive and negative posts they saw. It was part of a psychological study to examine how emotions can be spread on social media.

The company says users consent to this kind of manipulation when they agree to its terms of service. But in the quick judgment of the Internet, that argument was not universally accepted.

“I wonder if Facebook KILLED anyone with their emotion manipulation stunt. At their scale and with depressed people out there, it’s possible,” the privacy activist Lauren Weinstein wrote in a Twitter post.

On Sunday afternoon, the Facebook researcher who led the study, Adam D. I. Kramer, posted a public apology on his Facebook page.
An important aspect of studying emotion and mood with social media like Twitter is that we have no knowledge if the displayed emotion is truly the emotion experienced by the respective individuals at the moment in time when a tweet was shared. That is, when a tweet says “So happy that the weather is cooling down”, was the person really feeling “happy” at that time?

This exercise will explore your ideas around going about assessing to what extent social media emotion and real emotion are consistent, if at all. Specifically, you need to present a study design, involving data analysis, to examine this question. You need to:

1. Argue whether this is a valid question to explore. Justify your argument with personal experience or other information/common knowledge/understanding of social media platforms.
2. Propose how you would measure true emotion of a person.
3. How would you associate true emotion (in step #2) to social media emotion?
4. Propose how you would assess the relationship of an individual’s true emotion measured in step #2 and their manifested emotion on social media.
5. What do you expect to find based on the approach in step #4? Why?
Why is measuring mood useful?
Some examples follow...
Modeling Public Mood and Emotion: Twitter Sentiment and Socioeconomic Phenomena – (Bollen, Pepe, Mao, 2010)

- Examine how Twitter moods reflect social, political, and economic events
deviations from the mean as shown in Fig. 9.

and decreasing POMS mood scores for each of the days before and after election day is shown as a gray area for periods of time.

economic indicators on general mood levels across longer events, namely the U.S. Presidential election of November 4, 4. RESULTS

days before and after election day is shown as a gray area for the period under study:

vertical lines originate in the time line's events for the period under study:

grid points to less than 9,000, significant changes in the price of

tional banks, the DJIA dropping in value from above 11,000

2008 to December 20, 2008.

Our first case study is the 2008 US Presidential election

Our second case study relates to the celebration of Thanks-

ting which spikes significantly on Thanksgiving Day indica-

large magnitudes of the discussed mood changes, however.

The results of our data collection, aggregation and time

The Dow Jones remained stable

Tension swings from

September 2

Figure 4: Raw POMS Confusion scores (left) vs.

Depression swings from -1 standard devia-

The outcome of the election is celebrated on November 5

Our first case study is the 2008 US Presidential election

2. the DJIA and WTI trend lines;

3. the time series extracted from our collection of tweets

64-01"-

The Dow Jones remained stable

9,000.

and after the US presidential election on November

10,000

The sparklines in Fig. 5 and Fig. 6 do not do justice to the

The sparklines in Fig. 5 and Fig. 6 do not do justice to the

2. the DJIA and WTI trend lines;

3. the time series extracted from our collection of tweets

64-01"-

The Dow Jones remained stable

9,000.

and after the US presidential election on November

10,000

The sparklines in Fig. 5 and Fig. 6 do not do justice to the

The sparklines in Fig. 5 and Fig. 6 do not do justice to the

2. the DJIA and WTI trend lines;

3. the time series extracted from our collection of tweets

64-01"-

The Dow Jones remained stable

9,000.

and after the US presidential election on November

10,000

The sparklines in Fig. 5 and Fig. 6 do not do justice to the

The sparklines in Fig. 5 and Fig. 6 do not do justice to the

2. the DJIA and WTI trend lines;

3. the time series extracted from our collection of tweets

64-01"-

The Dow Jones remained stable

9,000.

and after the US presidential election on November

10,000

The sparklines in Fig. 5 and Fig. 6 do not do justice to the

The sparklines in Fig. 5 and Fig. 6 do not do justice to the

2. the DJIA and WTI trend lines;

3. the time series extracted from our collection of tweets

64-01"-

The Dow Jones remained stable

9,000.
Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter

Peter Sheridan Dodds, Kameron Decker Harris, Isabel M. Kloumann, Catherine A. Bliss, Christopher M. Danforth
Not All Moods Are Created Equal! Exploring Human Emotional States in Social Media, by De Choudhury, Counts, and Gamon 2012
• **Sentiment** – attitude or opinion with respect to a specific topic, event or situation

• **Emotion** – brief conscious experience characterized by intense mental activity and a high degree of pleasure or displeasure

• **Affect** – an instinctual reaction to stimulation occurring before the typical cognitive processes considered necessary for the formation of a more complex emotion

• **Mood** – emotional state. Moods differ from emotions or affects in that they are less specific, less intense, and less likely to be triggered by a particular stimulus or event
Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach
Summary

- Facebook data of 75K individuals
- Users took personality tests
 - Participants volunteered to share their status updates as part of the My Personality application, where they also took a variety of questionnaires
Summary

Volunteer Data

social media messages

gender, personality, location, age, health, ...

1) Linguistic feature extraction

a) words and phrases

b) topics

2) Correlation analysis

3) Visualization

words and topics: amazing, love, day, everyone, excited, for, challenge, work, love, family, great, blessed, beautiful, church, friends, happy, thank, good, fun, pray, good, tonight...

charts and graphs
Summary

- Open Vocabulary: Differential Language Analysis
<table>
<thead>
<tr>
<th>features</th>
<th>Gender</th>
<th>Age</th>
<th>Extraversion</th>
<th>Agreeableness</th>
<th>Conscientious</th>
<th>Neuroticism</th>
<th>Openness</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIWC</td>
<td>78.4%</td>
<td>.65</td>
<td>.27</td>
<td>.25</td>
<td>.29</td>
<td>.21</td>
<td>.29</td>
</tr>
<tr>
<td>Topics</td>
<td>87.5%</td>
<td>.80</td>
<td>.32</td>
<td>.29</td>
<td>.33</td>
<td>.28</td>
<td>.38</td>
</tr>
<tr>
<td>WordPhrases</td>
<td>91.4%</td>
<td>.83</td>
<td>.37</td>
<td>.29</td>
<td>.34</td>
<td>.29</td>
<td>.41</td>
</tr>
<tr>
<td>WordPhrases + Topics</td>
<td>91.9%</td>
<td>.84</td>
<td>.38</td>
<td>.31</td>
<td>.35</td>
<td>.31</td>
<td>.42</td>
</tr>
<tr>
<td>Topics + LIWC</td>
<td>89.2%</td>
<td>.80</td>
<td>.33</td>
<td>.29</td>
<td>.33</td>
<td>.28</td>
<td>.38</td>
</tr>
<tr>
<td>WordPhrases + LIWC</td>
<td>91.6%</td>
<td>.83</td>
<td>.38</td>
<td>.30</td>
<td>.34</td>
<td>.30</td>
<td>.41</td>
</tr>
<tr>
<td>WordPhrases + Topics + LIWC</td>
<td>91.9%</td>
<td>.84</td>
<td>.38</td>
<td>.31</td>
<td>.35</td>
<td>.31</td>
<td>.42</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0073791.t002
How is an open vocabulary approach more suitable for social media language data over closed vocabulary ones?
Character n-grams

Quantifying Mental Health Signals in Twitter

Glen Coppersmith Mark Dredze Craig Harman
Human Language Technology Center of Excellence
Johns Hopkins University
Baltimore, MD, USA

Abstract
The ubiquity of social media provides a rich opportunity to enhance the data available to mental health clinicians and researchers, enabling a better-informed and better-equipped mental health field. We present analysis of mental health phenomena in publicly available Twitter data, demonstrating how rigorous application of simple natural language processing methods can yield insight into specific disorders as well as mental health writ large.

In contrast, social media is plentiful and has enabled diverse research on a wide range of topics, including political science (Boydston et al., 2013), social science (Al Zamal et al., 2012), and health at an individual and population level (Paul and Dredze, 2011; Dredze, 2012; Aramaki et al., 2011; Hawn, 2009). Of the numerous health topics for which social media has been considered, mental health may actually be the most appropriate. A major component of mental health research requires the study of behavior, which may be manifest in how an individual acts, how they com-
What to do about bad language on the internet

Jacob Eisenstein
jacobe@gatech.edu
School of Interactive Computing
Georgia Institute of Technology

Abstract
The rise of social media has brought computational linguistics in ever-closer contact with bad language: text that defies our expectations about vocabulary, spelling, and syntax. This paper surveys the landscape of bad language, and offers a critical review of the NLP community’s response, which has largely followed two paths: normalization and domain adaptation. Each approach is evaluated in the context of theoretical and empirical work on

These examples are selected from celebrities (for privacy reasons), but they contain linguistic challenges that are endemic to the medium, including non-standard punctuation, capitalization, spelling, vocabulary, and syntax. The consequences for language technology are dire: a series of papers has detailed how state-of-the-art natural language processing (NLP) systems perform significantly worse on social media text. In part-of-speech tagging, the accuracy of the Stanford tagger (Toutanova et al.,
Twitter and Facebook are not representative of the general population: Political attitudes and demographics of British social media users

Jonathan Mellon¹ and Christopher Prosser²

Abstract
A growing social science literature has used Twitter and Facebook to study political and social phenomena including for election forecasting and tracking political conversations. This research note uses a nationally representative probability sample of the British population to examine how Twitter and Facebook users differ from the general population in terms of demographics, political attitudes and political behaviour. We find that Twitter and Facebook users differ substantially from the general population on many politically relevant dimensions including vote choice, turnout, age, gender, and education. On average social media users are younger and better educated than non-users, and they are more liberal...
Awareness of some of the risks

- Marginalized groups might be more marginalized in gender/personality inference because their language is less represented
- LGBTQ / non-binary gender representation
- Unintended biases
Semantics derived automatically from language corpora necessarily contain human biases

Aylin Caliskan¹, Joanna J. Bryson¹,², and Arvind Narayanan¹

¹Princeton University
²University of Bath
*Address correspondence to aylinc@princeton.edu, bryson@conjugateprior.org, arvindn@cs.princeton.edu.

ABSTRACT

Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language—the same sort of language humans are exposed to every day. We replicate a spectrum of standard human biases as exposed by the Implicit Association Test and other well-known psychological studies. We replicate these using a widely used, purely statistical machine-learning model—namely, the GloVe word embedding—trained on a corpus of text from the Web. Our results indicate that language itself contains recoverable and accurate imprints of our historic biases, whether these are morally neutral as towards insects or flowers, problematic as towards race or gender, or even simply veridical, reflecting the status quo for the distribution of gender with respect to careers or first names. These regularities are captured by machine learning along with the rest of semantics. In addition to our empirical findings concerning language, we also contribute new methods for evaluating bias in text, the Word Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT). Our results have implications not only for AI and machine learning, but also for the fields of psychology, sociology, and human ethics, since they raise the possibility that mere exposure to everyday language can account for the biases we replicate here.
Gender and Jobs in Online Image Searches

Men are overrepresented in online image search results across a majority of jobs examined; women appear lower than men in such search results for many jobs.

BY ONYI LAM, BRIAN BRODERICK, STEFAN WOJCIK AND ADAM HUGHES
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2

1Boston University, 8 Saint Mary’s Street, Boston, MA
2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract

The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between the words receptionist and female, while maintaining desired associations such as between the words queen
Social media is distorting the representation of women in Africa. Here’s what can be done about it
People use social media for all kinds of reasons and purposes. On Facebook in particular, people are heavily concerned about impression management.

Why do you think the assessments of personality are still accurate?
Facebook Profiles Reflect Actual Personality, Not Self-Idealization

Mitja D. Back¹, Juliane M. Stopfer¹, Simine Vazire², Sam Gaddis³, Stefan C. Schmukle⁴, Boris Egloff¹, and Samuel D. Gosling³

¹Department of Psychology, Johannes Gutenberg-University of Mainz; ²Department of Psychology, Washington University in St. Louis; ³Department of Psychology, University of Texas, Austin; and ⁴Department of Psychology, Westfälische Wilhelms-University Münster

Received 4/29/09; Revision accepted 7/21/09

More than 700 million people worldwide now have profiles on on-line social networking sites (OSNs), such as MySpace and Facebook (ComScore, 2008); OSNs have become integrated into the milieu of modern-day social interactions and are widely used as a primary medium for communication and networking (boyd & Ellison, 2007; Valkenburg & Peter, 2009). Despite the increasing integration of OSN activity into everyday life, however, there has been no research on the most fundamental question about OSN profiles: Do they convey accurate impressions of profile owners?

Method

Participants

Participants were 236 OSN users (ages 17–22 years) from the most popular OSNs in the United States (Facebook; N = 133, 52 male, 81 female) and Germany (StudiVZ, SchuelerVZ; N = 103, 17 male, 86 female). In the United States, participants were recruited from the University of Texas campus, where flyers and candy were used to find volunteers for a laboratory-based study of personality judgment. Participants were com-