CS 4001: Computing, Society & Professionalism

Munmun De Choudhury | Assistant Professor | School of Interactive Computing

Week 12: Visual Argument (Visual and Statistical Thinking by Tufte) March 28, 2017

Why Visualize?

Munzner, 2014

	1		2	2	1	3	4	
	Х	Y	Х	Y	Х	Y	Х	Y
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.8	16	0.8	16	0.8	16	0.8	816

Anscombe's Quartet: Raw Data

Why Visualize?

"Visualization is really about external cognition, that is, how resources outside the mind can be used to boost the cognitive capabilities of the mind"

- Stuart Card

Edward R. Tufte's "Visual and Statistical Thinking: Displays of Evidence for Making Decisions"

"When we reason about quantitative evidence, certain methods for displaying and analyzing data are better than others. Superior methods are more likely to produce truthful, credible, and precise findings. The difference between an excellent analysis and a faulty one can sometimes have momentous consequences."

Poor displays often lead to invalid arguments and false conclusions. Good displays help lead to valid arguments and true conclusions.

Two case studies with counter outcomes stemming from visual displays

Case 1: John Snow intervenes in the London cholera epidemic of 1854

Cholera broke out in central London on August 31, 1854. Cholera: severe watery diarrhea, vomiting, rapid dehydration death can occur within hours of infection; fatality rate of 50% killed millions in the 1800's in India, Russia, Europe, and N. America

Deficiencies in: understanding of bacteria technology sanitary living conditions

How is cholera transmitted?

How can we stop this cholera epidemic in central London?

Cholera is spread by: (1) breathing vapors of decaying matter or (2) drinking contaminated water.

Snow's Designs and Methods:

He searches for correlations between water and cholera.

John Snow's Cholera Visualization

The graphical display was aimed at conveying information about a possible cause-effect relationship.

Snow marked

- deaths from cholera (IIIIII)
- locations of 11 community water pumps.

Snow correlates deaths from cholera with locations of the water pumps

The spatially arranged display allows inspection of alternative explanations and contrary evidence.

Dr. Fraser also first called my attention to the following circumstances, which are perhaps the most conclusive of all in proving the connexion between the Broad Street pump and the outbreak of cholera. In the 'Weekly Return of Births and Deaths' of September 9th, the following death is recorded: 'At West End, on 2nd September, the widow of a percussion-cap maker, aged 59 years, diarrhea two hours, cholera epidemica sixteen hours.' I was informed by this lady's son that she had not been in the neighbourhood of Broad Street for many months. A cart went from Broad Street to West End every day, and it was the custom to take out a large bottle of the water from the pump in Broad Street, as she preferred it. The water was taken on Thursday, 31st August, and she drank of it in the evening, and also on Friday. She was seized with cholera on the evening of the latter day, and died on Saturday. . . . A niece, who was on a visit to this lady, also drank of the water; she returned to her residence, in a high and healthy part of Islington, was attacked with cholera, and died also. There was no cholera at the time, either at West End or in the neighbourhood where the niece died.10

Tufte, 2007

Snow's visualization enables quantitative comparisons to be made.

There is a brewery in Broad Street, near to the pump, and on perceiving that no brewer's men were registered as having died of cholera, I called on Mr. Huggins, the proprietor. He informed me that there were above seventy workmen employed in the brewery, and that none of them had suffered from cholera—at least in severe form—only two having been indisposed, and that not seriously, at the time the disease prevailed. The men are allowed a certain quantity of malt liquor, and Mr. Huggins believes they do not drink water at all; and he is quite certain that the workmen never obtained water from the pump in the street. There is a deep well in the brewery, in addition to the New River water. (p. 42)

"Saved by the Beer!"

Results and Conclusions:

Snow reports to the authorities

• Snow described his findings to the authorities one week after epidemic.

- \circ handle on the Broad Street water pump was removed on Sept 8
- epidemic soon ended

• But did Snow's intervention really cause the end of the epidemic?

 \circ most people in central London had fled or died

- Removing the pump handle probably prevented a recurrence.
- Snow's analysis and map provided strong evidence that cholera is transmitted by drinking contaminated water.

The Flip Side of Snow's Display

Tufte, 2007

The dot map

- does not take into account the number of people living in an area (e.g., an area may be free of cases because it is not populated"
- does not show death rates (e.g., maybe more people lived near Broad Street pump?)

Different displays can lead to different conclusions, that is, the link between cause and effect

Different displays can lead to different conclusions, that is, the link between cause and effect

Lesson: How NOT to manipulate data

Mark Monmonier's How to Lie with Maps aggregates of Snow's map:

•

Gregory Joseph's *Modern Visual Evidence* quarterly data

fiscal years

calendar years

Case 1: Hollywood Happy Ending

"For close upon 100 years we have been free in this country from epidemic cholera, and it is a freedom which, basically, we owe to the logical thinking, acute observations and simple sums of Dr. John Snow"

> Bradford Hill Proceedings of the Royal Society of Medicine, 1955

Case 2: Decision to Launch the Space Shuttle Challenger in January 1986

In the space shuttle, segments of the booster rockets are sealed with O-rings. Previous launches showed damage to the O-rings.

All previous launches had occurred at temperatures of \geq 53 °F. Forecasted temperature of the launch was 26-29 °F.

Will the O-rings maintain their seal at 26-29 °F? Should the launch proceed?

Engineers at Morton Thiokol Inc (MTI): No, and then Yes NASA officials: Yes

13 slides were faxed from MTI to NASA

171		1	ISTORY OF C	-RING DAMAGE D	N SRM FIELD	JOINTS		
			Cr	oss Sectional	View	To	View	61 h f
8	,	5.04	Erosion	Perimeter	Nominal	Length Of	Total Heat	Election
	APT	No.	(in.)	(deg)	(10.)	(in.)	(in.)	(deg)
. es								
5	61A LH Center Field**	23A	None	None	A-288	None	None	-36 - 56
•	COIN TH CONTER FIELD.	22A	NONE	NONE	0.280	NONE	NONE	558 -18
5	SIC LH Forward Field	15A	0.010	154.0	0.280	4.25	5.25	103
	SIL KA Center Field (prim)***	158	0.038	130.0	0.280	12.50	58.75	354
y	SIL KH Center Fleid (sec)***	158	None	45.0	0.280	None	29.50	204
	41D RH Forward Field	138	0.028	110.0	0.280	3.00	None	275
	41C LH Aft Field*	114	None	None	0.280	None	None	
	418 LH Forward Field	10A	0.040	217.0	0.280	3.00	14.50	351
N	STS-2 RH Aft Field	28	0.053	116.0	0.280			90
**Soot behind primary O-ring, heat affected secondary O-ring. Clocking location of leak check port - 0 deg. OTHER SRM-15 FILLION THANKY O-RING.								

SRM-22 FORWARD FIELD JOINT HAD PUTTY PATH TO PRIMARY O-RING, BUT NO O-RING EROSIO AND NO SOOT BLOWBY. OTHER SRM-22 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY.

	HIS TORY	OF O (DEGREE	-RING TER	PERATURES
MOTOR	MBT	AMB	O-RING	WIND
DM-4	68	36	47	10 трн
Dm-2	76	45	52	10 mpst
Qm - 3	72.5	40	48	10 m PH
Qm - 4	76	48	51	10 m PH
SRM-15	52	64	53	10 mp+
5RM-22	77	78	75	10 mpH
5 RM . 25	55	26	29 27	lo mrd 25 mpd

RECOMMENDATIONS :
° 0-RING TEMP MUST BE ≥ 53 °F AT LAUNCH
DEVELOPMENT MOTORS AT 47° TO 52°F WITH Putty Packing Had no Blow-By SRM 15 (THE BEST SIMULATION) WORKED AT 53°F
• PROJECT AMBIENT CONDITIONS (TEMP & WIND) To DETERMINE LAUNCH TIME

• 13 slides were faxed from MTI to NASA

,			Cr	oss Sectional	View	То	View	
3, 19r	AFT	SRM No.	Erosion Depth (in.)	Perimeter Affected (deg)	Nominal Dia. (in.)	Length Of Max Erosion (in.)	Total Heat Affected Length (in.)	Clocking Location (deg)
· oct	61A LH Center Field** 61A LH CENTER FIELD**	22A 22A	None	None NONÉ	0.280	None	None	36°66° 338° -18°
چ ج	SIC RH Center Field (prim)*** SIC RH Center Field (sec)***	15A 15B 158	0.010 0.038 None	154.0 130.0 45.0	0.280 0.280 0.280	4.25 12.50 None	5.25 58.75 29.50	354 354
	41D RH Forward Field 41C LH Aft Field* 418 LH Forward Field	138 11A 10A	0.028 None 0.040	110.0 None 217.0	0.280 0.280 0.280	3.00 None 3.00	None None 14.50	275
ביי	STS-2 RH Aft Field	28	0.053	116.0	0.280			90

***Soot behind primary 0-ring. ***Soot behind primary 0-ring, heat affected secondary 0-ring.

Clocking location of leak check port - 0 deg.

OTHER SRM-15 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY AND NO SOOT NEAR OR BEYOND THE PRIMARY O-RING.

SRM-22 FORWARD FIELD JOINT HAD PUTTY PATH TO PRIMARY O-RING, BUT NO O-RING EROSION AND NO SOOT BLOWBY. OTHER SRM-22 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY.

• 13 slides were faxed from MTI to NASA

BLOW BY HISTORY SRM-15 WORST BLOW-BY @ 2 CASE JOINTS (80°), (110°) ARC O MUCH WORSE VISUALLY THAN SRM-22 SRM 22 BLOW-BY 0 2 CASE JOINTS (30-40°) SRM-13-A, 15, 16A, 18, 23A 24A O NOZZLE BLOW-BY [Ref. 2/14-3 6 of 13]

• 13 slides were faxed from MTI to NASA

	HIS TORY	OF O (DEGRE	ES-F)	PERATURES
MOTOR	MBT	AMB	O-RING	WIND
DM-4	68	36	47	10 mph
Dm-2	76	45	52	10 mpH
QM - 3	72.5	40	48	10 m P/+
Qm - 4	76	48	51	10 m PH
SRM-15	52	64	53	10 mph
5RM-22	77	78	75	10 MPH
5 RM . 25	55	26	29 27	lo med 25 mpd

NASA officials ask MTI to reconsider, and MTI reverses their original decision

MORTON THIOKOL INC. Wasatch Division

INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

• 13 slides were faxed from MTI to NASA

```
RECOMMENDATIONS :

• O-RING TEMP MUST BE ≥ 53 °F AT LAUNCH

DEVELOPMENT MOTORS AT 47° TO 52°F WITH

PUTTY PACKING HAD NO BLOW-BY

SRM 15 (THE BEST SIMULATION) WORKED AT 53°F

• PROJECT AMBIENT CONDITIONS (TEMP & WIND)

TO DETERMINE LAUNCH TIME
```

- How would you respond to this argument? Was this an effective argument?
- This was MTI's only no-launch recommendation in 12 years.
- A NASA official responded that he was "appalled" by MTI's recommendation not to launch.

Post-Analysis

- MTI's engineers had originally reached the <u>right conclusion</u>, although with an <u>ineffective argument</u>.
- Commission investigating the accident:

"A careful analysis of the flight history of O-ring performance would have revealed the correlation of O-ring damage and low temperature. Neither NASA nor Thiokol carried out such an analysis; consequently, they were unprepared to properly evaluate the risks of launching the 51-L [Challenger] mission in conditions more extreme than they had encountered before."

• How might the data have been better analyzed, presented and communicated?

Attempt #1 shows a full analysis correlating temperature with damage to the O-rings

Attempt #1 shows a full analysis correlating temperature with damage to the O-rings

- What are the pro's and con's of this data display?
- Can it be improved?

Attempt #2: Tufte summarizes all data into a table with a "Damage Index"

Flight	Date	Temperature °F	Erosion Incidents	Blow-by incidents	Damage Index	Comments
51-C	01.24.85	51°	3	2	11	Most erosion any flight; blow by; secondary rings heated
41 - B	02.03.84	57°	1		4	Deep, extensive erosion
61 - C	01.12.86	58°	1		4	O-ring erosion on launch two weeks before Challenger
41 - C	04.06.84	63°	1		2	O-ring showed signs of heating, but no damage
1	04.12.81	66°			0	Coolest launch without O-ring problems
6	04.04.83	67°			0	
51-A	11.08.84	67°			0	
51 - D	04.12.85	67°			0	
5	11.11.82	68°			0	
3	02.22.82	69°			0	
2	11.12.81	70°	1		4	Extent of erosion not fully known
9	11.28.83	70°			0	
41 - D	08.30.84	70°			0	
51-G	06.17.85	70°	1		4	
7	06.18.83	72°			0	
8	08.30.83	73°			0	
51-B	04.29.85	75°		2	0	No erosion. Soot found behind two primary O-Rings
61-A	10.30.85	76°			0	
51-I	08.27.85	76°			0	
61 - B	11.26.85	76°			0	
41-G	10.05.84	78°			0	
51-J	10.03.95	79°			0	
4	06.27.82	80°			?	O-ring condition unknown; rocket casing lost at sea
51-F	07.29.85	81°			0	

• What are the pro's and con's of this data display?

• Can it be improved?

Attempt #2: Tufte summarizes all data into a graph with a "Damage Index"

O-ring damage index, each launch

- What are the pro's and con's of this data display?
- Can it be improved?

Attempt #3: Keller summarizes all data into a color graph

- What are the pro's and con's of this data display?
- Can it be improved?

Applying the 4 key tasks to the Challenger launch

1. Defining message

What's the point of this display? What am I trying to communicate? What is my message? How do I make my message clear?

Should I use table, text, or graph, or a visual? What design principles lead to quick cognitive processing and effective communication of the message?

3. Creating

design

4. Using software

How do I implement my ideas using software so that I control the software, and the software does not control the outcome?

Apply to Challenger Problem

Need to persuade mgmt. that low temperatures can cause O-ring damage Table or graph to show relationship

Organize with complete dataset of events, ordered by temperature, ideally on one page

Excel scatter plot, with appropriate scale and highlights