CS 4001: Computing, Society &

Professionalism

Munmun De Choudhury | Assistant Professor | School of Interactive Computing

Class 1:Case Study: Therac-25
January 12, 2017

The Context

Radiation therapy

72 Many people with cancer were diagnosed and
treated, but were also exposed more radiation than
they needed

Example Case 1

Therac-20 had optional PDP-11 control, plus built-in
hardware checks

The new technology, Therac-25 relied on software only

11 installed machines; 6 major accidents; 3 deaths

72 Improper scanning of the spread of the radiology beam,
causing radiation burn and secondary cancer

?2 Software errors showing dose was not delivered,
technician failed to verify

Denial — manufacturer and operation refused to believe
that the system could make a mistake

Example Case 2

The radiation software required that three essential
programming instructions be saved in sequence: first,
the quantity or dose of radiation in the beam; then a
digital image of the treatment area; and finally,
instructions that guide the multileaf collimator.

When the computer kept crashing, the medical
physicist, did not realize that her instructions had not
been saved.

It was customary — though not mandatory — that the
physicist would run a test before the first treatment to
make sure that the computer had been programmed
correctly. But the hospital had a staffing shortage.

Example Case 3

One therapist mistakenly programmed the
computer for “wedge out” rather than “wedge in,”

as the plan required.
Another therapist failed to catch the error.

And the physics staff repeatedly failed to notice it
during their weekly checks of treatment records.

A Philadelphia hospital gave the wrong radiation
dose to more than 90 patients with prostate
cancer — and then kept quiet about it.

A Florida hospital disclosed that 77 brain cancer
patients had received 50 percent more radiation
than prescribed because one of the most
powerful — and supposedly precise — linear
accelerators had been programmed incorrectly
for nearly a year.

Dr. Howard I. Amols, chief of clinical physics at
Memorial Sloan-Kettering Cancer Center in New
York: “Linear accelerators and treatment
planning are enormously more complex than 20
years ago. But hospitals are often too trusting of
the new computer systems and software, relying
on them as if they had been tested over time,
when in fact they have not.”

Why Detection is Difficult

Identifying radiation injuries can be difficult.

Organ damage and radiation-induced cancer might
not surface for years or decades, while underdosing
is difficult to detect because there is no injury.

For these reasons, radiation mishaps seldom result
in lawsuits, a barometer of potential problems
within an industry.

Computerization of Radiation Technology

Computerization reduced human time needed to
calibrate machines and perform safety checks

But human intervention was still needed to check
whether the technology’s software came up with a
good treatment solution for a patient

People involved in the tragedies

Company who made the softwares for the
accelerometers

Programmers and testers behind the softwares
Doctors who prescribed medication

Staff and technicians who managed the
accelerometers

Stakeholders: Class Activity |

Split into groups, have each come up with:
72 what each stakeholder did
72 what they didn't do

72 what they could have done differently

Defense design

Causal Factors: Class Activity |l

What kind of regulations and check may be put in place
to minimize any of the errors that were reported to

occur? What should have happened?

Main causes:

software flaws, faulty programming, safe versus friendly
interfaces

failure to follow a good quality assurance plan, poor safety
procedures

inadequate staffing and training

excessive trust in the software, user and government
oversight and standards

Automation: Classroom Activity I

Most of you wouldn’t work with technology with
life-critical implications. But automation is
pervasive.

When is automation good?
When is it not good?

What checks should be in place to ensure
automation is safe and reliable?

Software Reuse: Classroom Activity IV

Most of you wouldn’t work with technology with
life-critical implications. But software reuse is
pervasive in many applications.

When is reuse good?
When is it not good?

What checks should be in place to ensure reuse is
safe and reliable?

