CS 8803 Data Analytics for Well-Being:
Analytics Review I

Munmun De Choudhury

munmund@gatech.edu

Classification

Simple example of a classification model (“classifier”):

* Use the label of the past training point which is most similar to
the new test point, and return that as the prediction (“k nearest-
neighbor”).

target/class

: A __._ B
. - model - > \ O
B 7/
training A learn V4 | B \
dataset " / f? O \‘
B | A '
]
S @ OB |
test 7 B -]
dataset : - 2 A \\ // B
| apply 5 o NS -7 0
? model = T

Classification: k-NN Algorithm

* The k-NN algorithm for continuous-valued target functions
* Calculate the mean values of the k nearest neighbors

* Distance-weighted nearest neighbor algorithm

* Weight the contribution of each of the k neighbors according to

their distance to the query point x,
— giving greater weight to closer neighbors w

1

o d(x,,,x.)2
* Similarly, forreaI-vaIuedtargetfunctlons(q 2

* Robust to noisy data by averaging k-nearest neighbors

* Curse of dimensionality: distance between neighbors could be
dominated by irrelevant attributes.

* To overcome it, axes stretch or elimination of the least relevant
attributes.

Classification: Decision trees

* Adecision tree is a decision support tool that uses a tree-
like graph or model of decisions and their possible
consequences, including chance event outcomes, resource
costs, and utility.

* Adecision tree is a flowchart-like structure in which internal
node represents a "test" on an attribute (e.g. whether a coin flip
comes up heads or tails), each branch represents the outcome of
the test and each leaf node represents a class label (decision
taken after computing all attributes).

* The paths from root to leaf represents classification rules.

Classification: Decision trees

* Adecision tree consists of 3 types of nodes:

Decision nodes - commonly represented by squares
* Chance nodes - represented by circles

* Endnodes - represented by triangles

Example: Should you recommend smoking cessation content to B?

HISTORY TEST PROCEDURE ACTUAL PAYOFF
f(p,q)Cond 1
r e

2 (<Temiz
prob=q r2 Cond 1

a2 (g

prob=p O Cond 1
ARD Cond 1

prob=1-q
Cmd 1
Cmd 2
Ccnd 1

prob=1-q Cmd1
(<= cond2

Classification: linear classifier

* Alinear classifier achieves this by making a classification
decision based on the value of a linear combination of the
characteristics.

A
X2 H H

Classification: linear classifier

* Naive Bayes classifiers are a family of simple probabilistic
classifiers based on applying Bayes' theorem with strong
(naive) independence assumptions between the features.

* A naive Bayes classifier assumes that the value of a particular
feature is unrelated to the presence or absence of any other
feature, given the class variable.

* Example: a fruit may be considered to be an appleifitis red,
round, and about 3" in diameter. A naive Bayes classifier
considers each of these features to contribute independently to
the probability that this fruit is an apple, regardless of the
presence or absence of the other features.

Bayesian Classification: Why?

* Probabilistic learning: Calculate explicit probabilities for
hypothesis, among the most practical approaches to certain
types of learning problems

* Incremental: Each training example can incrementally increase/
decrease the probability that a hypothesis is correct. Prior
knowledge can be combined with observed data.

* Probabilistic prediction: Predict multiple hypotheses,
weighted by their probabilities

e Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision
making against which other methods can be measured

Classification: linear classifier

* Alogistic regression model predicts a binary response from a
binary predictor

* Itisused for predicting the outcome of a categorical dependent
variable (i.e., a class label) based on one or more predictor
variables (features). That is, it is used in estimating the
parameters of a qualitative response model.

* The probabilities describing the possible outcomes of a single

trial are modeled, as a function of the explanatory (predictor)
variables, using a logistic function.

1
1 + e—Bo+512)”

F(z) =

Classification: Support Vector Machine

A support vector machine constructs a hyperplane or set of hyperplanesin a
high- or infinite-dimensional space, which can be used for classification,
regression, or other tasks.

Intuitively, a good separation is achieved by the hyperplane that has the
largest distance to the nearest training data point of any class (so-called
functional margin), since in general the larger the margin the lower the

generalization error of the classifier.

A
X2

Video explaining how SVM works (in detail):

https://www.youtube.com/watch?v=1NxnPkZMgbc

Classification: Support Vector Machine

* Butdatais notalways linearly separable!

* SVMs can efficiently perform a non-linear classification using
what is called the kernel trick, implicitly mapping their inputs into
high-dimensional feature spaces.

 How it works: https://www.youtube.com/watch?v=3liCbRZPrZA

A
X2

Discriminative Classifiers

Advantages

* prediction accuracy is generally high
* (as compared to Bayesian methods —in general)

* robust, works when training examples contain errors
* fast evaluation of the learned target function
* (Bayesian networks are normally slow)
Criticism
* longtraining time
» difficult to understand the learned function (weights)
* (Bayesian networks can be used easily for pattern discovery)

* noteasy to incorporate domain knowledge
* (easy in the form of priors on the data or distributions)

Classification Summary

* Convert training data to a set of vectors of features:

* Build a model based on the statistical properties of features in the training set,
e.g. Naive Bayesian Classifier, Logistic Regression, Support Vector Machines

* Foreach new text document to classify: (1) Extract features; (2) Ask model to
predict the most likely outcome

_ Training 7_ features
Text vectors
Documents,
Images, _ _
Sounds... - -

n Machine
Learning

Algorithm

[Labels . |

New
Text features

Document, - vector -
Image,

Sound

Predictive
Model

- Expected
Label

Class Exercise |l

* You have created a supervised learner (e.g. a binary classifier) to
distinguish between flu infected individuals and non-flu infected
individuals on Twitter.

* What features would you use for the purpose?

* What might happen to training error and test error (decrease /
increase / no change) if you:
* Engineer better features?
* Double the number of model parameters?
* Double the amount of training data?
* Double the amount of test data?

How to choose the right classifier?

* Predictive accuracy
* Speed and scalability

* time to construct the model
* time to use the model

* Robustness
* handling noise and missing values

* Scalability
» efficiency for high dimension, large-scale data
* Interpretability
* understanding and insight provided by the model

* Goodness of rules
* decision tree size
» compactness of classification rules

Clustering

* "Show me the sub-groups in the data.”

* Why show sub-groups in the data? Sometimes:
* Computational reasons (e.g. use cluster centers instead of the dataset)

 Statistical reasons (e.g. identify/remove outliers)
* Mainly: Visualization/understanding reasons

* Cite examples where you'll apply clustering to study a social
computing problem?

Clustering: K means

e The K-means method is as follows:

* Firstinitialize the means u, somehow, for example by choosing K different
points randomly. Then:

* Assign each point according to
C(i) = arg min [|x; = p|-

* Recompute each u, according to the new assignments.
* Stop when no assignments change.

* However, it does not necessarily obtain the global optimum. In practice,

this is done, say, 10 times and the result with the lowest sum-of-squares is
used.

Clustering: how to choose K?

* A (heuristic) approach (out of many that have been proposed)
uses the gap statistic — it chooses the K where the data look most
clustered when compared to uniformly-distributed data.

For each value of K, compute the log of within-cluster scatter, logW, for
the best clustering using that K.
For each value of K, also compute this quantity for m clusterings using

uniformly-distributed data — call this log W’ and its standard deviation s,.
it the next cluster center.

Compute G(K) = | logW,~ logW’|.
Choose the K such that G(K) = G(K + 1)-s, V/(1 + 1/m), i.e. the smallest K
producing a gap within one standard deviation of the gap at K + 1.

Clustering: hierarchical clustering

* Hierarchical clustering is a method of cluster analysis which
seeks to build a hierarchy of clusters. Strategies for hierarchical
clustering generally fall into two types:

Agglomerative: This is a "bottom up" approach: each observation starts in
its own cluster, and pairs of clusters are merged as one moves up the
hierarchy.

Divisive: This is a "top down" approach: all observations start in one

cluster, and splits are performed recursively as one moves down the
hierarchy.

Clustering: hierarchical clustering

In order to decide which clusters should be combined (for agglomerative), or
where a cluster should be split (for divisive), a measure of dissimilarity between
sets of observations is required.

Euclidean distance lla —bll2= \/Z(a“ —b;)?

a-b
Cosine similarity m

@2@@2@@

“
o
S e =

Classification Algos in NLTK

= Nalve Bayes
= Maximum Entropy / Logistic Regression
= Decision Tree

= SVM (coming soon)

Bl e

Text
C

Classification using NLTK

from nltk.classify import NaiveBayesClassifier
neg_examples = [(features(reviews.words(i)), 'neg’) for i in neg_ids]
pos_examples = [(features(reviews.words(i)), 'pos') for i in pos_ids]

train_set = pos_examples + neg_examples

classifier = NaiveBayesClassifier.train(train_set)

Other NLTK Features

= clustering
= Mmetrics
= parsing
= stemming
= \NordNet

= .. and a lot more

Notable Included Corpora

= Movie_reviews: pos & neg categorized IMDb reviews
= treebank: tagged and parsed WSJ text

x freebank_chunk: tagged and chunked WSJ text

= prown: tagged & categorized english text

= 60 other corpora In many languages

Other Python NLP Libraries

= pattern; http://www.clips.ua.ac.be/pages/pattern

= scikits.learn: http://scikit-learn.sourceforge.net/stable/

= fuzzywuzzy: hitps://github.com/seatgeek/fuzzywuzzy

Doing slightly advanced data mining

YoXe! scikits.learn: machine learning in Python — scikits.learn v0.7 documentation

.‘ scikits.learn: machine learning i... *

ese s scikits.learn: machine learning in Python

scikits.learn 0.7 is available tsonstes ember of chaters 3
for download. See what's
new and tips on installing.

Videos

Watch the 2010 ICML
Introductory Video by Gaél

:
:

Easy-to-use and general-purpose machine learning in Python

Participate scikits.learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific
Python packages (numpy, scipy, matplotlib).
Fork the source code, join
the mailing lists, report bugs It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in

to the issue tracker or various contexts: machine-learning as a versatile tool for science and engineering.
participate in the next
coding sprint. Read More...

Features: . Solid: Supervised leamning: Support Vector Machines, Generalized Linear Models.

« Work in progress: Unsupervised learning: Clustering, Gaussian mixture models, manifold learning, /CA,

Gaussian Processes
User Guide « Planed: Gaussian graphical models, matrix factorization .
Example Gallery License: (QOpen source, commercially usable: BSD license (3 clause) X

N

Feature extraction using scikits.learn

from scikits.learn.features.text import WordNGramAnalyzer
text = (u"J'ai mang\xe9 du kangourou ce midi,"

u" c'\xe9tait pas tr\xeas bon.")

WordNGramAnalyzer(min_n=1, max_n=2).analyze(text)

[u'al', uUmange’, u'du’, u'kangourou’, u'ce’, u'midi’, u'etait’,
u'pas’, u'tres’, u'bon’, u'ai mange', u'mange du’, u'du
kangourou', u'kangourou ce', u'ce midi', u'midi etait', u'etait
pas', u'pas tres', u'tres bon']

from scikits.learn.features.text import CharNGramAnalyzer

analyzer = CharNGramAnalyzer(min_n=3, max_n=0)

char_ngrams = analyzer.analyze(text)

TF-IDF features and SVM

from scikits.learn.features.text.sparse import Vectorizer

from scikits.learn.sparse.svm.sparse import LinearSVC

vec = Vectorizer(analyzer=analyzer)

features = vec.fit_transform(list_of_documents)

clf = LinearSVC(C=100).fit(features, labels)

clf2 = pickle.loads(pickle.dumps(clf))

predicted_labels = clf2.predict(features_of new_docs)

Import numpy as np

from sklearn.svm import SVR

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

X,y = np.load(‘data.npz’)
x_test = np.linspace(o, 200)

regularization

model = Pipeline([ferm

(‘standardize', StandardScaler()),
(‘'svr', SVR(kernel="rbf', verbose=0, C=5e6,
epsilon=20)) 1)
model.fit(x[::, np.newaxis], y)
y_test = model.predict(x_test[::, np.newaxis])

Clustering using scikits.learn

from sklearn import datasets
from sklearn.cluster import KMeans
from numpy.random import RandomState

rng = RandomState(42)
k_means = KMeans(3, random_state=rng)

boston = datasets.load_boston()

X = boston.data
k_means.fit(X)

Text Feature extraction in sklearn

sklearn.feature extraction.text
CountVectorizer

— Transform articles into token-count matrix
TfidfVectorizer

— Transform articles into token-TFIDF matrix
Usage:
— fit(): construct token dictionary given dataset

— transform(): generate numerical matrix

Text Feature extraction

* Analyzer

— Preprocessor: str -> str
e Default: lowercase
e Extra: strip_accents — handle unicode chars

— Tokenizer: str -> [str]

* Default: re.findall(ur"(?u)\b\w\w+\b“ string)
— Analyzer: str -> [str]

1. Call preprocessor and tokenizer

2. Filter stopwords
3. Generate n-gram tokens

Feature Selection

* Decrease the number of features:
— Reduce the resource usage for faster learning

— Remove the most common tokens and the most
rare tokens (words with less information):
* Parameter for Vectorizer:
— max_df
— min_df

— max_features

Cross Validation

* When tuning the parameters of model, let
each article as training and testing data
alternately to ensure the parameters are not
dedicated to some specific articles.

— from sklearn.cross_validation import KFold
— for train_index, test_index in KFold(10, 2):

e train_index=[567 8 9]
e test index=[012 3 4]

Performance Evaluation

* precision =

e recall =

* flscor

tp+fn

tp e sklearn.metrics
tp+fp

— precision_score

— recall_score
o =7 precisionxrecall f1_score
precisiontrecall actual class

(observation)

tp fp
(true positive) (false positive)
predicted class Correct result Unexpected result
(expectation) fn tn
(false negative) (true negative)

Missing result Correct absence of result

Using scikits.learn Summary

)

\O°

o
. S
0 |
_ Tr_?_lnl{mg 05.‘("} | features
eX N© vectors
Documents,

Images, _ _

Sounds... - -
‘ _ s

‘ L] \‘{\\.\1\&

AR

Labels :

ﬁ — >
| (\e““\

6005/

o\
0%
New \(as‘

Text Je©” features

ey | WY | |vecor M)
Sound, |

Machine
Learning
Algorithm

Predictive
Model

Expected
Label

scikit-learn
algorithm cheat-sheet

classification
get
more
.

NO
= O NOT e YES
Text SRMKINS <100K
Data o Samples
' predicting a
ves | category
YES

do you have
labeled
NO data
YES

predicting a
number of quantity
categories
known

just
looking %

regression

NO,

<100K NOT
samples WORKING

clustering

NOT
WORKING
NOT
WORKING

dimensionality
reduction

A few notes

-The quality of your input data will affect the accuracy of
your classifier.

- The threshold value that determines the sample size of
the feature set will need to be refined until it reaches its
maximum accuracy. This will need to be adjusted if
training data is added, changed or removed.

Sentiment Classification w/ Python

* Sentiment Classifier using Word Sense Disambiguation
using wordnet and word occurrence statistics from movie review
corpus nltk.

* Classifies into positive and negative categories.

pip install sentiment_classifier
python setup.py install

cd sentiment_classifier/src/senti_classifier/
python senti_classifier.py -c reviews.txt

from senti_classifier import senti_classifier

sentences = ['The movie was the worst movie', It was the worst acting by the actors']
pos_score, neg_score = senti_classifier.polarity_scores(sentences)

print pos_score, neg_score

Some pointers

e http://scikit-learn.sf.net doc & examples

nttp://github.com/scikit-learn code
e http://www.nltk.org code & doc & PDF book
e http://streamhacker.com/

« Jacob Perkins' blog on NLTK & APIs
https://github.com/japerk/nltk-trainer

