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Languageis the most common and reliable
way for people to translate their internal
thoughts and emotions into a form that
others can understand. Words and language,

then, are the very stuff of psychology and
communication -- Tauszczik & Pennebaker






Diurnal and Seasonal Mood
Vary with Work, Sleep, and Day
length Across Diverse Cultures



Summary

* One of the early works examiningrelationship between social
media mood and behavior and psychologicaltheories.

* The potential of onlinesocial mediato study individual behavior.

 Identify daily and seasonal mood variations and relate it to work,
sleep and daylight.

* Validatecircadianrhythmsin humans.

PA spike in the morning, NA increases as the day progresses

* Measure positive affect and negative affectbased on the lexicon
LIWC.

* PA and NA are not mirrorimages of each other.
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Twitter is used by millions and both the
papers extensively leverage this source of
data in measuring mood and affect.

How does use of Twitter for this purpose address
limitations in existing mood or affect
measurement methods?



witter is used by millions and both the
papers extensively leverage this source of
data in measuring mood and affect.

But could Twitter also have bias?



How do you expect the results relating to
mood to be different if the paper used: 1)
Facebook 2) Instagram?



Could platform affordancesimpact specific
moods and their manifestations on social
media? How?



Class Exercise



Why is measuring mood useful?
Some examples follow...



Modeling Public Mood and Emotion: Twitter
Sentiment and Socioeconomic Phenomena
— (Bollen, Pepe, Mao, 2010)

* Examine how Twitter moodsreflectsocial, political, and
economic events

* Use POMS (profile of mood states) for detecting mood-
indicative twitter posts.

POMS dimensions: tension, depression, anger, vigor, fatigue and
confusion

* Investigate how a six vector representation of moods deviates
during different big scope events.

* High stress/tension during elections; excitement/vigorduring
thanksgiving.
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Temporal Patterns of Happiness and Information in a Global Social Network:

Hedonometrics and Twitter
Peter Sheridan Dodds , Kameron Decker Harris, Isabel M. Kloumann, Catherine A. Bliss, Christopher M. Danforth

Bailout of the U.S. financial system:
Tref: 7 days before and after (havy=6.00)

Royal Wedding of Prince William & Catherine Middleto
Tief: 7 days before and after (hayz=5.98)

Death of Osama Bin Laden:
Tier: 7 days before and after (have=5.98)
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Not All Moods Are Created Equal! ExploringHuman Emotional
States in Social Media, by De Choudhury, Counts, and Gamon 2012
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Emotion - brief conscious experience characterized by intense
mental activity and a high degree of pleasure or displeasure

Affect — aninstinctual reaction to stimulation occurring before
the typical cognitive processes considered necessary forthe
formation of a more complexemotion

Mood —emotional state. Moods differ from emotions or affects
in that they are less specific, lessintense, and less likely to be
triggered by a particularstimulus or event

Sentiment —attitude or opinion with respect to a specifictopic,
event or situation



Personality, Gender, and Age in
the Language of Social Media:
The Open-Vocabulary Approach



Summary

* Facebook data of 75K individuals

* Users took personality tests

* Participantsvolunteered to share their status updates as
part of the My Personality application, where they also took
a variety of questionnaires
* Authors found found striking variations in language
with personality, gender, and age

* Use of an open vocabulary approach

* Results confirmed previously known social science
findings, suggested new hypotheses, and showed
sustained face validity



Summary

Volunteer Data

_ _ gender personality
social media location
messages age health
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feature ) degeies 2) Correlation
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3) Visualization
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Summary

* OpenVocabulary:Differential Language Analysis

* Keycharacteristics:

* Open-vocabulary —itisnotlimited to predefined word lists. Rather,
linguistic featuresincluding words, phrases, and topics (sets of
semantically related words) are automatically determined from the
texts. (l.e., itis "data-driven”.) Thismeans DLAis classified as a type of
open-vocabulary approach.

« Discriminating—itfinds key linguistic features that distinguish
psychological and demographic attributes, using stringent significance
tests.

 Simple-ituses simple, fast, and readily accepted statistical techniques.
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Summary
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Summary

Gender Age Extraversion Agreeableness Conscientious. Neuroticism Openness

features accuracy R R R R R R

LIWC 78.4% .65 27 25 29 21 29
Topics 87.5% .80 32 .29 .33 .28 .38
WordPhrases 91.4% .83 .37 .29 .34 .29 41
WordPhrases + Topics  91.9% .84 .38 .31 .35 .31 42
Topics + LIWC 89.2% .80 .33 .29 .33 .28 .38
WordPhrases + LIWC 91.6% .83 .38 .30 .34 .30 41
WordPhrases + Topics  91.9% .84 .38 .31 .35 .31 42

+ LIWC

accuracy: percent predicted correctly (for discrete binary outcomes). R: Square-root of the coefficient of determination (for sequential/continuous outcomes). LIWC: A
priori word-categories from Linguistic Inquiry and Word Count. Topics: Automatically created LDA topic clusters. WordPhrases: words and phrases (n-grams of size 1 to 3
passing a collocation filter). Bold indicates significant (p<<.01) improvement over the baseline set of features (use of LIWC alone).
doi:10.1371/journal.pone.0073791.t002



Why is gender and personality
inference useful for social computing
researchers and professionals?



How is an open vocabulary
approach more suitable for social
media language data over closed

vocabulary ones?



People use social media for all kinds of
reasons and purposes. On Facebook in
particular, people are heavily concerned
about impression management.

Why do you think the assessments of
personality are still accurate?



TECHNOLOGY

Facebook Tinkers With Users’ Emotions
in News Feed Experiment, Stirring Outcry

By VINDU GOEL JUNE 29, 2014

To Facebook, we are all 1ab rats.

Facebook routinely adjusts its users’ news
feeds — testing out the number of ads
they see or the size of photos that appear
— often without their knowledge. It is all
for the purpose, the company says, of

creating a more alluring and useful

Facebook revealed that it had altered the news feeds of product,
over half a million users in its study.
Karen Bleier/Agence France-Presse — Getty Images

But last week, Facebook revealed that it

had manipulated the news feeds of over
half a million randomly selected users to change the number of positive and
negative posts they saw. It was part of a psychological study to examine how
emotions can be spread on social media.

The company says users consent to this kind of manipulation when they
agree to its terms of service. But in the quick judgment of the Internet, that
argument was not universally accepted.

“I wonder if Facebook KILLED anyone with their emotion manipulation
stunt. At their scale and with depressed people out there, it’s possible,” the
privacy activist Lauren Weinstein wrote in a Twitter post.

On Sunday afternoon, the Facebook researcher who led the study, Adam D.
I. Kramer, posted a public apology on his Facebook page.



