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Story time

Obesity contagion

Figure: Network of 2,200 individuals from the Framingham Heart and Health Study.
Source: Christakis and Fowler 2007.
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Introduction

A formal definition of social influence

Social influence occurs when one’s emotions, opinions, or behaviors
are affected by others.1

1http://qualities-of-a-leader.com/personal-mbti-type-analysis/ by way of Wikipedia.
Nihar Shah · Peter Tu Social Media and Social Influence 7 November 2012



Social influence – a critical 
construct of social networks





What is the Tipping Point? 

That magic moment when an idea, 

trend or social behavior crosses, 

tips and spreads like wildfire.



https://www.youtube.com/watch?v=FrpdxTGsjbE



Three Agents of Change 

1.

2.

3.

These provide a direction for how to 
go about reaching a tipping point.



https://www.youtube.com/watch?v=wcpvKtmAKl0



Models of social influence

Models of social influence

1 “Influentials”
coterie of highly visible individuals or media sources (Rogers 1962).
Ex: Oprah Winfrey, Natalie Portman, George Clooney

2 “Accidental influentials”
social influence more dependent on the receptibility of public than the
innate magnetism of an influential (Watts and Dodds 2007).
Analogy: a forest fire

3 “Social Networks”
close relationships determine the degree of influence

Nihar Shah · Peter Tu Social Media and Social Influence 7 November 2012



Structure and agency 
together matter…





Measuring User Influence in 
Twitter: The Million Follower 
Fallacy



Summary



What intuition may explain why large 
number of followers does not 
necessarily imply greater influence?



Everyone’s an Influencer: 
Quantifying Influence on 
Twitter



Summary

Figure 2: Three ways of assigning influence to mul-
tiple sources

friends. Having defined immediate influence, we can then
construct disjoint influence trees for every initial posting of a
URL. The number of users in these influence trees—referred
to as “cascades”—thus define the influence score for every
seed. See Figure 3 for some examples of cascades. To check
that our results are not an artifact of any particular assump-
tion about how individuals are influenced to repost infor-
mation, we conducted our analysis for all three definitions.
Although particular numerical values varied slightly across
the three definitions, the qualitative findings were identical;
thus for simplicity we report results only for first influence.

Before proceeding, we note that our use of reposting to
indicate influence is somewhat more inclusive than the con-
vention of “retweeting” (e.g. using the terminology “RT
@username”) which explicitly attributes the original user.
An advantage of our approach is that we can include in our
observations all instances in which a URL was reposted re-
gardless of whether it was acknowledged by the user, thereby
greatly increasing the coverage of our observations. (Since
our study, Twitter has introduced a “retweet” feature that
arguably increases the likelihood that reposts will be ac-
knowledged, but does not guarantee that they will be.) How-
ever, a potential disadvantage of our definition is that it
may mistakenly attribute influence to what is in reality a se-
quence of independent events. In particular, it is likely that
users who follow each other will have similar interests and
so are more likely to post the same URL in close succession
than random pairs of users. Thus it is possible that some
of what we are labeling influence is really a consequence of
homophily [2]. From this perspective, our estimates of in-
fluence should be viewed as an upper bound.

On the other hand, there are reasons to think that our
measure underestimates actual influence, as re-broadcasting
a URL is a particularly strong signal of interest. A weaker
but still relevant measure might be to observe whether a
given user views the content of a shortened URL, imply-
ing that they are sufficiently interested in what the poster
has to say that they will take some action to investigate
it. Unfortunately click-through data on bit.ly URLs are of-
ten difficult to interpret, as one cannot distinguish between
programmatic unshortening events—e.g., from crawlers or
browser extensions—and actual user clicks. Thus we instead
relied on reposting as a conservative measure of influence,
acknowledging that alternative measures of influence should
also be studied as the platform matures.

Finally, we reiterate that the type of influence we study
here is of a rather narrow kind: being influenced to pass
along a particular piece of information. As we discuss later,

Figure 3: Examples of information cascades on
Twitter.

there are many reasons why individuals may choose to pass
along information other than the number and identity of
the individuals from whom they received it—in particular,
the nature of the content itself. Moreover, influencing an-
other individual to pass along a piece of information does not
necessarily imply any other kind of influence, such as influ-
encing their purchasing behavior, or political opinion. Our
use of the term “influencer” should therefore be interpreted
as applying only very narrowly to the ability to consistently
seed cascades that spread further than others. Nevertheless,
differences in this ability, such as they do exist, can be con-
sidered a certain type of influence, especially when the same
information (in this case the same original URL) is seeded
by many different individuals. Moreover, the terms“influen-
tials” and“influencers”have often been used in precisely this
manner [3]; thus our usage is also consistent with previous
work.

5. PREDICTING INDIVIDUAL INFLUENCE

We now investigate an idealized version of how a mar-
keter might identify influencers to seed a word-of-mouth
campaign [16], where we note that from a marketer’s per-
spective the critical capability is to identify attributes of
individuals that consistently predict influence. Reiterating
that by “influence” we mean a user’s ability to seed content
containing URLs that generate large cascades of reposts, we
therefore begin by describing the cascades we are trying to
predict.

As Figure 4a shows, the distribution of cascade sizes is
approximately power-law, implying that the vast majority
of posted URLs do not spread at all (the average cascade
size is 1.14 and the median is 1), while a small fraction
are reposted thousands of times. The depth of the cascade
(Figure 4b) is also right skewed, but more closely resembles
an exponential distribution, where the deepest cascades can
propagate as far as nine generations from their origin; but
again the vast majority of URLs are not reposted at all,
corresponding to cascades of size 1 and depth 0 in which
the seed is the only node in the tree. Regardless of whether





Why do we care about social 
influence on social computing 
systems?



Why do we care about social 
influence on social computing 
systems?



An information cascade



How have cascades been studied?
• Will information ever get shared? 

Petrovic, S., Osborne, M., & Lavrenko, V. (2011). RT to Win! Predicting Message Propagation in Twitter. ICWSM 2011. 

• Will popular content remain popular? 
Ma, Z., Sun, A., & Cong, G. (2013). On predicting the popularity of newly emerging hashtags in Twitter. JASIST 2013. 

• What do large cascades look like?  
Dow, P. A., Adamic, L. A., & Friggeri, A. (2013). The Anatomy of Large Facebook Cascades. ICWSM 2013. 

• How will a cascade grow in the future?



Can cascades be predicted?
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ABSTRACT
On many social networking web sites such as Facebook and Twit-
ter, resharing or reposting functionality allows users to share oth-
ers’ content with their own friends or followers. As content is
reshared from user to user, large cascades of reshares can form.
While a growing body of research has focused on analyzing and
characterizing such cascades, a recent, parallel line of work has
argued that the future trajectory of a cascade may be inherently un-
predictable. In this work, we develop a framework for addressing
cascade prediction problems. On a large sample of photo reshare
cascades on Facebook, we find strong performance in predicting
whether a cascade will continue to grow in the future. We find that
the relative growth of a cascade becomes more predictable as we
observe more of its reshares, that temporal and structural features
are key predictors of cascade size, and that initially, breadth, rather
than depth in a cascade is a better indicator of larger cascades. This
prediction performance is robust in the sense that multiple distinct
classes of features all achieve similar performance. We also dis-
cover that temporal features are predictive of a cascade’s eventual
shape. Observing independent cascades of the same content, we
find that while these cascades differ greatly in size, we are still able
to predict which ends up the largest.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining
General Terms: Experimentation, Measurement.
Keywords: Information diffusion, cascade prediction, contagion.

1. INTRODUCTION
The sharing of content through social networks has become an

important mechanism by which people discover and consume in-
formation online. In certain instances, a photo, link, or other piece
of information may get reshared multiple times: a user shares the
content with her set of friends, several of these friends share it with
their respective sets of friends, and a cascade of resharing can de-
velop, potentially reaching a large number of people. Such cas-
cades have been identified in settings including blogging [1, 13,
21], e-mail [12, 22], product recommendation [20], and social sites
such as Facebook and Twitter [9, 18]. A growing body of research

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW ’14 Seoul, Republic of Korea
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2567997.

has focused on characterizing cascades in these domains, including
their structural properties and their content.

In parallel to these investigations, there has been a recent line
of work adding notes of caution to the study of cascades. These
cautionary notes fall into two main genres: first, that large cascades
are rare [11]; and second, that the eventual scope of a cascade may
be an inherently unpredictable property [28, 31]. The first concern
— that large cascades are rare — is a widespread property that has
been observed quantitatively in many systems where information
is shared. The second concern is arguably more striking, but also
much harder to verify quantitatively: to what extent is the future
trajectory of a cascade predictable; and which features, if any, are
most useful for this prediction task?

Part of the challenge in approaching this prediction question is
that the most direct ways of formulating it do not fully address the
two concerns above. Specifically, if we are presented with a short
initial portion of a cascade and asked to estimate its final size, then
we are faced with a pathological prediction task, since almost all
cascades are small. Alternately, if we radically overrepresent large
cascades in our sample, we end up studying an artificial setting
that does not resemble how cascades are encountered in practice.
A set of recent initial studies have undertaken versions of cascade
prediction despite these difficulties [19, 23, 26, 29], but to some
extent they are inherent in these problem formulations.

These challenges reinforce the fact that finding a robust way to
formulate the problem of cascade prediction remains an open prob-
lem. And because it is open, we are missing a way to obtain a
deeper, more fundamental understanding of the predictability of
cascades. How should we set up the question so that it becomes
possible to address these issues directly, and engage more deeply
with arguments about whether cascades might, in the end, be inher-
ently unpredictable?

The present work: Cascade growth prediction. In this paper,
we propose a new approach to the prediction of cascades, and show
that it leads to strong and robust prediction results. We are moti-
vated by a view of cascades as complex dynamic objects that pass
through successive stages as they grow. Rather than thinking of
a cascade as something whose final endpoint should be predicted
from its initial conditions, we think of it as something that should be
tracked over time, via a sequence of prediction problems in which
we are constantly seeking to estimate the cascade’s next stage from
its current one.

What would it mean to predict the “next stage” of a cascade? If
we think about all cascades that reach size k, there is a distribution
of eventual sizes that these cascades will reach. Then the distribu-
tion of cascade sizes has a median value f(k) � k. This number
f(k) is thus the “typical” final size for cascades that reached size



Reshares on FacebookExample



Which of these Facebook photos went viral?



Large cascades are rare
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Same content, different popularityDifficulty #2



Class Activity 1





Content Features
score

food/nature/...

The probability of the photo having a specific feature (food, overlaid text, landmark, nature, etc.)
is_en Whether the photo was posted by an English-speaking user or page
has_caption Whether the photo was posted with a caption
liwc

pos/neg/soc

Proportion of words in the caption that expressed positive or negative emotion, or sociality, if English

Root (Original Poster) Features
views0, k Number of users who saw the original photo until the kth reshare was posted
orig_is_page Whether the original poster is a page
outdeg(v0) Friend, subscriber or fan count of the original poster
age0 Age of the original poster, if a user
gender0 Gender of the original poster, if a user
fb_age0 Time since the original poster registered on Facebook, if a user
activity0 Average number of days the original poster was active in the past month, if a user

Resharer Features
views1..k�1, k Number of users who saw the first k � 1 reshares until the kth reshare was posted
pages

k

Number of pages responsible for the first k reshares, including the root, or
P

k

i=0 {v
i

is a page}
friends

avg/90p

k

Average or 90th percentile friend count of the first k resharers, or 1
k

P
k

i=1 outdeg friends(vi) {v
i

is a user}
fans

avg/90p

k

Average or 90th percentile fan count of the first k resharers, or 1
k

P
k

i=1 outdeg(vi) {v
i

is a page}
subscribers

avg/90p

k

Average or 90th percentile subscriber count of the first k resharers, or 1
k

P
k

i=1 outdegsubscriber (vi) {v
i

is a user}
fb_agesavg/90p

k

Average or 90th percentile time since the first k resharers registered on Facebook, or 1
k

P
k

i=1 fb_age
i

activities

avg/90p

k

Average number of days the first k resharers were active in July, or 1
k

P
k

i=1 activityi

ages

avg/90p

k

Average age of the first k resharers, or 1
k

P
k

i=1 agei

female

k

Number of female users among the first k resharers, or
P

k

i=1 {gender
i

is female}

Structural Features
outdeg(v

i

) Connection count (sum of friend, subscriber and fan counts) of the ith resharer (or out-degree of v
i

on G = (V,E))
outdeg(v0

i

) Out-degree of the ith reshare on the induced subgraph G0 = (V 0, E0) of the first k resharers and the root
outdeg(v̂

i

) Out-degree of the ith reshare on the reshare graph Ĝ = (V̂ , Ê) of the first k reshares
orig_connections

k

Number of first k resharers who are friends with, or fans of the root, or |{v
i

| (v0, v
i

) 2 E, 1  i  k}|
border_nodes

k

Total number of users or pages reachable from the first k resharers and the root, or |{v
i

| (v
i

, v
j

) 2 E, 0  i, j  k}|
border_edges

k

Total number of first-degree connections of the first k resharers and the root, or |{(v
i

, v
j

) | (v
i

, v
j

) 2 E, 0  i, j  k}|
subgraph

0
k

Number of edges on the induced subgraph of the first k resharers and the root, or |{(v
i

, v
j

) | (v
i

, v
j

) 2 E0, 0  i, j  k}|
depth

0
k

Change in tree depth of the first k reshares, or min
�

P
k

i=1(depthi

� �i)2

depths

avg/90p

k

Average or 90th percentile tree depth of the first k reshares, or 1
k

P
k

i=1 depthi

did_leave Whether any of the first k reshares are not first-degree connections of the root

Temporal Features
time

i

Time elapsed between the original post and the ith reshare
time

0
1..k/2 Average time between reshares, for the first k/2 reshares, or 1

k/2�1

P
k/2�1
i=1 (time

i+1 � time

i

)

time

0
k/2..k Average time between reshares, for the last k/2 reshares, or 1

k/2�1

P
k�1
i=k/2(time

i+1 � time

i

)

time

00
1..k Change in the time between reshares of the first k reshares, or min

�

P
k�1
i=1 (time

i+1 � time

i

)� �i)2

views

0
0,k Number of users who saw the original photo, until the kth reshare was posted, per unit time, or views0, k

timek

views

0
1..k�1, k Number of users who saw the first k � 1 reshares, until the kth reshare was posted, per unit time, or views1..k�1,k

timek

Table 1: List of features used for learning. We compute these features given the cascade until the kth reshare.

do next (i.e., k = 5 vs. k = 25).
Fixing the minimum cascade size R. In the previous version of
the task, cascades are required only to have at least k reshares.
Thus, the set of cascades changes with k. Here, we examine a
variation of this task, where we compose a dataset of cascades that
have at least R reshares. We observe the first k (k  R) reshares of
the cascade and aim to predict whether the cascade will grow over
the median size (over all cascades of size � R). As we increase
k, the task gets easier as we observe more of the cascade and the
predicted quantity does not change.

With the task, we find that performance increases linearly with

k up to R, or that there is no “sweet spot” or region of diminishing
returns (p < 0.05 using a Harvey-Collier test). For example, the
top-most line in Figure 6 shows that when each observed cascade
has obtained 100 or more reshares, performance increases linearly
as more of the cascade is observed. This demonstrates that more
information is always better: the greater the number of observed
reshares, the better the prediction.

However, Figure 6 also shows that larger cascades are less pre-
dictable than smaller cascades. For example, predicting whether
cascades with 1,000 to 2,000 reshares grow large is significantly
more difficult than predicting cascades of 100 to 200 reshares. This
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Figure 6: Knowing that a cascade obtains at least R reshares, pre-
diction performance increases linearly with k, k  R. However,
differentiating among cascades with large R also becomes more
difficult.

shows that once one knows that a cascade will grow to be large,
knowing the characteristics of the very beginning of its spread is
less useful for prediction.

3.5 Changes in feature importance
We now examine how feature importance changes as more and

more of the cascade is observed. In this experiment, we compute
the value of the feature after observing first k reshares and mea-
sure the correlation coefficient of the feature value with the log-
transformed number of reshares (or cascade size).

Figure 7 shows the results for the five feature types. We summa-
rize the results by the following observations:

• Correlations of averages increase with the number of ob-
servations. As we obtain more examples, naturally aver-
ages get less noisy, and more predictive (e.g., agesavg and
friends

avg ).

• The original post gets less important with increasing k. Af-
ter observing 100 reshares, it becomes less important that
the original post was made by a page (orig_is_page), or
that the original poster had many connections to other users
(outdeg(v0)).

• Similarly, the actual content being reshared gets less impor-
tant with increasing k. Almost all content features tend to
zero as k increases, except for has_caption and is_en . This
can be explained by the fact that cascades of photos with
captions have a unimodal distribution, and cascades started
by English speakers have a bimodal distribution. Thus, these
features become correlated in opposite directions.

• Successful cascades get many views in a short amount of
time, and achieve high conversion rates. The number of
users who have viewed reshares of a cascade is more nega-
tively correlated with increasing k (views1..k�1,k), suggest-
ing that requiring “fewer tries” to achieve a given number of
reshares is a positive indicator of its future success. On the
other hand, while requiring fewer views is good, rapid expo-
sure, or reaching many users within a short amount of time
is also a positive predictor (views 01..k�1,k).

• Structural connectedness is important, but gets less impor-
tant over time. Nevertheless, reshare depth remains highly
correlated: the deeper a cascade goes, the more likely it is to
be long-lasting, as even users “far away” from the original
poster still find the content interesting.

(a) Content
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(b) Root
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(c) Resharer
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(d) Structural
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(e) Temporal
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Figure 7: The importance of each feature varies as we observe more
of a cascade, as shown by the change in correlation coefficients.

• The importance of timing features remains relatively stable.
While highly correlated, timing features remain remarkably
stable in importance as k increases.

We note individual features’ logistic regression coefficients em-
pirically follow similar shapes, but have the downside of having
interactions with one another. Using either the slope of the best-
fit line of the cascade size against the normalized feature value,
or individual feature performance also reveals similar trends. Fur-
ther LIWC text content features (positive, negative, and social cat-
egories) consistently performed poorly, attaining performance no

Accuracy Mean Reciprocal Rank

0.266
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0.319
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0.364
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Logistic Regression Conditional Inference Forest

Figure 10: In predicting the largest cascade in clusters of 10 or
more cascades of identical photos, we perform significantly above
the baseline of 0.1.

ing cascade structure: 0.622 vs. 0.620. Nevertheless, structural
features remain individually more accurate (⇡ 0.58) and highly
correlated (0.161  |r|  0.255) with the Wiener index. In-
dividually, one temporal feature, views 01..k�1,k, is slightly more
accurate (0.602) compared to the best-performing structural fea-
ture, outdeg(v̂0) (0.600), but is significantly less correlated (0.041
vs. �0.255). The two classes of features nicely complement each
other, since when combined, accuracy increases to 0.72.
Cascade structure also becomes more predictable with increas-
ing k. Like for cascade growth prediction, our prediction perfor-
mance improves as we observe more of the cascade, with accuracy
linearly increasing from 0.724 when k is 5 to 0.808 when k is 100.
A linear relation also exists in the alternate task where we set the
minimum cascade size R to be 100, varying k between 5 and 100.
Changes in feature importance. As we increase k, we find that
the structural features become highly correlated with the Wiener
index, suggesting that the initial shape of a cascade is a good indi-
cator of its final structure. Rapidly growing cascades also result in
final structures that are shallower—temporal features become more
strongly correlated with the Wiener index as k increases. Unlike
with cascade size, views were generally weakly correlated with
structure, while content features had a weak, near-constant effect.
Nonetheless, some of these features still provided reasonable per-
formance in the prediction task.
User vs. page-started cascades. In predicting the shape of a cas-
cade, we find that our overall prediction accuracy for pages is slightly
higher (0.724) than for users (0.700). While using only structural
features alone results in a higher prediction accuracy for users (0.643)
than for pages (0.601), user and content features are significantly
more predictive of cascade structure in the case of pages.

To sum up, we find that predicting the shape of a cascade is not
as hard as one might fear. Nevertheless, predicting cascade size is
still much easier than predicting cascade shape, though classifiers
for either achieve non-trivial performance.

5. PREDICTABILITY & CONTENT

5.1 Controlling for cascade content
In our analyses thus far, we examined cascades of uploads of

different photos, and tried to account for content differences by in-
cluding photo and caption features. However, temporal and struc-
tural features may still capture some of the difference in content.
Thus, we now study how well we can predict cascade size if we
control for the content of the photo itself. We consider identical
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Figure 11: The initial exposure of the uploaded photo and initial
reshares serve to differentiate datasets from one another, as can be
seen by comparing the correlation coefficients of each feature with
the log cascade size. Solid circles indicate significance at p < 10–3,
and lines through each circle indicate the 95% confidence interval.

photos uploaded to Facebook by different users and pages, which
is not a rare occurrence. We used an image matching algorithm
to identify copies of the same image and place their corresponding
cascades into clusters (983 clusters, N

c

= 38,073, N
r

= 12,755,621).
As one might expect, even the same photo uploaded at different
times by different users can fare dramatically differently; a cluster
typically consists of a few or even a single cascade with a large
number of reshares, and many smaller cascades with few reshares.
The average Gini coefficient, a measure of inequality, is 0.787 (� =
0.104) within clusters. Thus, a natural task is to try to predict the
largest cascade within a cluster. For every cluster we select 10 ran-
dom cascades, placing the accuracy of random guessing at 10%.

As shown in Figure 10, in all cases we significantly outperform
the baseline. Using a random forest model, we can identify the
most popular cascade nearly half the time (accuracy 0.497); a mean
reciprocal rank of 0.662 indicates that this cascade also appears in
the top two predicted cascades almost all the time.

In terms of feature importance we notice that best results are
obtained using temporal features, followed by resharer, root node,
and structural features. Essentially, if one upload of the photo is ini-
tially spreading more rapidly than other uploads of the same photo,
that cascade is also likely to grow to be the largest. This points
to the importance of landing in the right part of the network at the
right time, as the same photo tends to have widely and predictably
varying outcomes when uploaded multiple times.

5.2 Feature importance in context
Some features may be more or less important for our prediction

tasks in different contexts. Figure 11 shows how several features
correlate with log-transformed cascade size when conditioned on
one of four different variables, including (1) source node type—
user vs page, (2) language—English versus Portuguese, the two
most common languages of cascade root nodes in our dataset, (3) whether
text is overlaid on a photo—a common feature of recent Internet
memes, and (4) content category. We determine content category
by matching entities in photo captions to Wikipedia articles, and
in turn articles to seven higher-level categories: animal, entertain-
ment, politics, religion, famous people (excluding religious and po-
litical figures), food, and health.



Main findings



But the platform matters…



https://www.youtube.com/watch?v=AtnR5H6AVVU


