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•  Frigyes	  Karinthy	  in	  1929	  published	  a	  volume	  of	  short	  stories	  
called	  “Everything	  is	  Different”	  

•  He	  was	  the	  first	  proponent	  of	  the	  six	  degrees	  of	  
separation	  concept,	  in	  his	  1929	  short	  story,	  Chains	  (Láncszemek)	  

•  In	  his	  book	  the	  characters	  created	  a	  game	  out	  of	  the	  notion	  that	  
“the	  world	  is	  shrinking”:	  

A	  fascinating	  game	  grew	  out	  of	  this	  discussion.	  One	  of	  us	  
suggested	  performing	  the	  following	  experiment	  to	  prove	  
that	  the	  population	  of	  the	  Earth	  is	  closer	  together	  now	  than	  
they	  have	  ever	  been	  before.	  We	  should	  select	  any	  person	  
from	  the	  1.5	  billion	  inhabitants	  of	  the	  Earth	  –	  anyone,	  
anywhere	  at	  all.	  He	  bet	  us	  that,	  using	  no	  more	  
than	  five	  individuals,	  one	  of	  whom	  is	  a	  personal	  
acquaintance,	  he	  could	  contact	  the	  selected	  individual	  using	  
nothing	  except	  the	  network	  of	  personal	  acquaintances	  



Planetary	  Scale	  View	  on	  
a	  Large	  Instant	  
Messaging	  Network	  



Summary	  



The	  Political	  
Blogosphere	  and	  the	  
2004	  U.S.	  Election:	  
Divided	  They	  Blog	  



Summary	  
•  First	  analysis	  of	  politics	  and	  elections	  on	  social	  media.	  
•  2004	  Presidential	  elections	  were	  studied	  over	  blogs,	  particularly	  4	  

A-‐list	  bloggers,	  over	  a	  two	  month	  period	  before	  elections.	  
–  12470	  posts	  from	  the	  left,	  and	  10414	  posts	  from	  the	  right	  

•  Findings:	  
–  Conservatives	  and	  liberals	  were	  situated	  in	  contrastingly	  different	  and	  

disconnected	  communities.	  
–  Difference	  was	  observed	  in	  terms	  of	  the	  news	  and	  other	  external	  content	  

shared.	  
–  Conservative	  blogs	  were	  more	  tightly	  knit,	  in	  terms	  of	  links	  cited.	  
–  Liberals	  had	  stronger	  reciprocal	  connections.	  
–  Conserva)ve	  blogs	  occasionally	  linked	  to	  liberal	  blogs	  whereas	  the	  reverse	  

was	  not	  true.	  
–  Analysis	  of	  blog	  comments	  indicated	  stronger	  association	  within	  

communities	  than	  between	  communities.	  



You	  Reflections	  



Leskovec	  and	  Horvitz	  found	  that	  99.9%	  of	  
the	  nodes	  in	  the	  graph	  of	  Live	  Messenger	  
conversations	  were	  connected.	  Why	  do	  you	  
think	  this	  was	  the	  case?	  Are	  Twitter	  or	  
Facebook	  likely	  to	  be	  different?	  



Adamic	  and	  Glance	  only	  analyzed	  a	  handful	  
of	  political	  bloggers.	  Would	  results	  differ	  for	  
regular	  social	  media	  users?	  



Adamic	  and	  Glance	  only	  analyzed	  
connections	  between	  conservatives	  and	  
liberals.	  Could	  semantic	  analysis	  of	  blog	  
content	  revealed	  something	  different?	  



Adamic	  and	  Glance	  only	  analyzed	  
connections	  between	  conservatives	  and	  
liberals.	  No	  consideration	  was	  made	  of	  the	  
signed	  nature	  of	  ties.	  How	  would	  you	  use	  
this	  concept	  on	  the	  political	  domain?	  



Adamic	  and	  Glance	  also	  found	  that	  
conservatives	  linked	  more	  to	  each	  other	  and	  
in	  a	  denser	  pattern	  than	  the	  liberals.	  Would	  
you	  expect	  these	  patterns	  to	  generalize	  to	  
social	  media	  and	  to	  today’s	  political	  climate?	  



On	  a	  related	  note,	  Adamic	  and	  Glance	  found	  
both	  conservative	  and	  liberal	  communities	  to	  
act	  as	  mild	  echo	  chambers.	  How	  do	  you	  see	  
this	  playing	  out	  in	  today’s	  social	  media?	  



What	  about	  the	  “other”	  (independent	  or	  
moderate)	  political	  blogs?	  



Would	  these	  patterns	  be	  prevalent	  in	  social	  
media	  e.g.,	  Twitter	  conversations	  too?	  
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Figure 6: Communication characteristics of users by
reported age. We plot age vs. age and the color (z-
axis) represents the intensity of communication.

priorities arrive and wait until all tasks with higher priority
are addressed. This model generates a task waiting time
distribution described by a power-law with exponent −1.5.

5. COMMUNICATION DEMOGRAPHICS
Next we examine the interplay of communication and user

demographic attributes, i.e., how geography, location, age,
and gender influence observed communication patterns.

5.1 Communication by age
We sought to understand how communication among peo-

ple changes with the reported ages of participating users.
Figures 6(a)-(d) use a heat-map visualization to commu-
nicate properties for different age–age pairs. The rows and
columns represent the ages of both parties participating, and
the color at each age–age cell captures the logarithm of the
value for the pairing. The color spectrum extends from blue
(low value) through green, yellow, and onto red (the highest
value). Because of potential misreporting at very low and
high ages, we concentrate on users with self-reported ages
that fall between 10 and 60 years.

Let a tuple (ai, bi, di, mi) denote the ith conversation in
the entire dataset that occurred among users of ages ai

and bi. The conversation had a duration of di seconds
during which mi messages were exchanged. Let Ca,b =
{(ai, bi, di, mi) : ai = a ∧ bi = b} denote a set of all con-
versations between users of ages a and b, respectively.

Figure 6(a) shows the number of conversations among peo-
ple of different ages. For every pair of ages (a, b) the color
indicates the size of set Ca,b, i.e., the number of different
conversations between users of ages a and b. We note that,
as the notion of a conversation is symmetric, the plots are
symmetric. Most conversations occur between people of ages
10 to 20. The diagonal trend indicates that people tend to
talk to people of similar age. This is true especially for age
groups between 10 and 30 years. We shall explore this ob-
servation in more detail in Section 6.

Figure 6(b) displays a heat map for the average conver-
sation duration, computed as 1

|Ca,b|

∑
i∈Ca,b

di. We note

that older people tend to have longer conversations. We ob-

(a) U F M
U 1.3 3.6 3.7
F 21.3 49.9
M 20.2

(b) U F M
U 277 301 277
F 275 304
M 252

(c) U F M
U 5.7 7.1 6.7
F 6.6 7.6
M 5.9

(d) U F M
U 1.25 1.42 1.38
F 1.43 1.50
M 1.42

Table 1: Cross-gender communication, based on all
two-person conversations during June 2006. (a)
Percentage of conversations among users of differ-
ent self-reported gender; (b) average conversation
length in seconds; (c) number of exchanged messages
per conversation; (d) number of exchanged messages
per minute of conversation.

serve a similar phenomenon when plotting the average num-
ber of exchanged messages per conversation, computed as

1

|Ca,b|

∑
i∈Ca,b

mi, displayed in Figure 6(c). Again, we find

that older people exchange more messages, and we observe
a dip for ages 25–45 and a slight peak for ages 15–25. Fig-
ure 6(d) displays the number of exchanged messages per unit
time; for each age pair, (a, b), we measure 1

|Ca,b|

∑
i∈Ca,b

mi
di

.

Here, we see that younger people have faster-paced dialogs,
while older people exchange messages at a slower pace.

We note that the younger population (ages 10–35) are
strongly biased towards communicating with people of a
similar age (diagonal trend in Figure 6(a)), and that users
who report being of ages 35 years and above tend to com-
municate more evenly across ages (rectangular pattern in
Fig. 6(a)). Moreover, older people have conversations of the
longest durations, with a “valley” in the duration of conver-
sations for users of ages 25–35. Such a dip may represent
shorter, faster-paced and more intensive conversations asso-
ciated with work-related communications, versus more ex-
tended, slower, and longer interactions associated with social
discourse.

5.2 Communication by gender
We report on analyses of properties of pairwise communi-

cations as a function of the self-reported gender of users in
conversations in Table 1. Let Cg,h = {(gi, hi, di, mi) : gi =
g∧hi = h} denote a set of conversations where the two par-
ticipating users are of genders g and h. Note that g takes 3
possible values: female, male, and unknown (unreported).

Table 1(a) relays |Cg,h| for combinations of genders g and
h. The table shows that approximately 50% of conversations
occur between male and female and 40% of the conversations
occur among users of the same gender (20% for each). A
small number of conversations occur between people who
did not reveal their gender.

Similarly, Table 1(b) shows the average conversation length
in seconds, broken down by the gender of conversant, com-
puted as 1

|Cg,h|

∑
i∈Cg,h

di. We find that male–male conver-

sations tend to be shortest, lasting approximately 4 min-
utes. Female–female conversations last 4.5 minutes on the
average. Female–male conversations have the longest du-
rations, taking more than 5 minutes on average. Beyond
taking place over longer periods of time, more messages are
exchanged in female–male conversations. Table 1(c) lists



Does	  distance	  still	  matter?	  Figure 9: A communication heat map.
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Figure 10: (a) Communication among countries
with at least 10 million conversations in June 2006.
(b) Countries by average length of the conversation.
Edge widths correspond to logarithms of intensity
of links.

width of the edges are proportional to the mean length of
conversations between the countries. The core of the net-
work appears to be Arabic countries, including Saudi Ara-
bia, Egypt, United Arab Emirates, Jordan, and Syria.

5.5 Communication and geographical distance
We were interested in how communications change as the

distance between people increases. We had hypothesized
that the number of conversations would decrease with geo-
graphical distance as users might be doing less coordination
with one another on a daily basis, and where communication
would likely require more effort to coordinate than might
typically be needed for people situated more locally. We
also conjectured that, once initiated, conversations among
people who are farther apart would be somewhat longer as
there might be a stronger need to catch up when the less-
frequent conversations occurred.

Figure 11 plots the relation between communication and
distance. Figure 11(a) shows the distribution of the num-
ber of conversations between conversants at distance l. We
found that the number of conversations decreases with dis-
tance. However, we observe a peak at a distance of approx-
imately 500 kilometers. The other peaks and drops may re-
veal geographical features. For example, a significant drop
in communication at distance of 5,000 km (3,500 miles) may
reflect the width of the Atlantic ocean or the distance be-
tween the east and west coasts of the United States. The
number of links rapidly decreases with distance. This finding
suggests that users may use Messenger mainly for communi-
cations with others within a local context and environment.
We found that the number of exchanged messages and con-
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Figure 11: Communication with the distance.

Correlation Probability
Attribute Rnd Comm Rnd Comm
Age -0.0001 0.297 0.030 0.162
Gender 0.0001 -0.032 0.434 0.426
ZIP -0.0003 0.557 0.001 0.23
County 0.0005 0.704 0.046 0.734
Language -0.0001 0.694 0.030 0.798

Table 2: Correlation coefficients and probability of
users sharing an attribute for random pairs of people
versus for pairs of people who communicate.

versation lengths do not increase with distance (see plots
in [7]). Conversation duration decreases with the distance,
while the number of exchanged messages remains constant
before decreasing slowly. Figure 11(b) shows the commu-
nications per link versus the distance among participants.
The plot shows that longer links, i.e., connections between
people who are farther apart, are more frequently used than
shorter links. We interpret this finding to mean that peo-
ple who are farther apart use Messenger more frequently to
communicate.

In summary, we observe that the total number of links and
associated conversations decreases with increasing distance
among participants. The same is true for the duration of
conversations, the number of exchanged messages per con-
versation, and the number of exchanged messages per unit
time. However, the number of times a link is used tends
to increase with the distance among users. This suggests
that people who are farther apart tend to converse with IM
more frequently, which perhaps takes the place of more ex-
pensive long-distance voice telephony; voice might be used
more frequently in lieu of IM for less expensive local com-
munications.

6. HOMOPHILY OF COMMUNICATION
We performed several experiments to measure the level

at which people tend to communicate with similar people.
First, we consider all 1.3 billion pairs of people who ex-
changed at least one message in June 2006, and calculate
the similarity of various user demographic attributes. We
contrast this with the similarity of pairs of users selected
via uniform random sampling across 180 million users. We
consider two measures of similarity: the correlation coeffi-
cient and the probability that users have the same attribute
value, e.g., that users come from the same countries.

Table 2 compares correlation coefficients of various user
attributes when pairs of users are chosen uniformly at ran-
dom with coefficients for pairs of users who communicate.
We can see that attributes are not correlated for random
pairs of people, but that they are highly correlated for users



Equivalent	  to	  the	  above	  graph,	  what	  measures	  
of	  engagement	  on	  Facebook	  or	  Twitter	  do	  you	  
think	  hold	  the	  network	  together?	  

7.3 Strength of the ties
It has been observed by Albert et al. [1] that many real-

world networks are robust to node-level changes or attacks.
Researchers have showed that networks like the World Wide
Web, Internet, and several social networks display a high
degree of robustness to random node removals, i.e., one has
to remove many nodes chosen uniformly at random to make
the network disconnected. On the contrary, targeted attacks
are very effective. Removing a few high degree nodes can
have a dramatic influence on the connectivity of a network.

Let us now study how the Messenger communication net-
work is decomposed when “strong,” i.e., heavily used, edges
are removed from the network. We consider several different
definitions of “heavily used,” and measure the types of edges
that are most important for network connectivity. We note
that a similar experiment was performed by Shi et al [13]
in the context of a small IM buddy network. The authors
of the prior study took the number of common friends at
the ends of an edge as a measure of the link strength. As
the number of edges here is too large (1.3 billion) to remove
edges one by one, we employed the following procedure: We
order the nodes by decreasing value per a measure of the
intensity of engagement of users; we then delete nodes as-
sociated with users in order of decreasing measure and we
observe the evolution of the properties of the communication
network as nodes are deleted.

We consider the following different measures of engage-
ment:

• Average sent: The average number of sent messages
per user’s conversation

• Average time: The average duration of user’s conver-
sations

• Links: The number of links of a user (node degree),
i.e., number of different people he or she exchanged
messages with

• Conversations: The total number of conversations of a
user in the observation period

• Sent messages: The total number of sent messages by
a user in the observation period

• Sent per unit time: The number of sent messages per
unit time of a conversation

• Total time: The total conversation time of a user in
the observation period

At each step of the experiment, we remove 10 million
nodes in order of the specific measure of engagement being
studied. We then determine the relative size of the largest
connected component, i.e., given the network at particu-
lar step, we find the fraction of the nodes belonging to the
largest connected component of the network.

Figure 17 plots the evolution of the fraction of nodes in
the largest connected component with the number of deleted
nodes. We plot a separate curve for each of the seven dif-
ferent measures of engagement. For comparison, we also
consider the random deletion of the nodes.

The decomposition procedure highlighted two types of dy-
namics of network change with node removal. The size of the
largest component decreases rapidly when we use as mea-
sures of engagement the number of links, number of conver-
sations, total conversation time, or number of sent messages.
In contrast, the size of the largest component decreases very
slowly when we use as a measure of engagement the average
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Figure 17: Relative size of the largest connected
component as a function of number of nodes re-
moved.
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Figure 18: Number of removed edges as nodes are
deleted by order of different measures of engage-
ment.

time per conversation, average number of sent messages, or
number of sent messages per unit time. We were not sur-
prised to find that the size of the largest component size de-
creases most rapidly when nodes are deleted in order of the
decreasing number of links that they have, i.e., the number
of people with whom a user at a node communicates. Ran-
dom ordering of the nodes shrinks the component at the
slowest rate. After removing 160 million out of 180 million
nodes with the random policy, the largest component still
contains about half of the nodes. Surprisingly, when deleting
up to 100 million nodes, the average time per conversation
measure shrinks the component even more slowly than the
random deletion policy.

Figure 18 displays plots of the number of removed edges
from the network as nodes are deleted. Similar to the rela-
tionships in Figure 17, we found that deleting nodes by the
inverse number of edges removes edges the fastest. As in
Figure 18, the same group of node ordering criteria (num-
ber of conversations, total conversation time or number of
sent messages) removes edges from the networks as fast as
the number of links criteria. However, we find that ran-
dom node removal removes edges in a linear manner. Edges
are removed at a lower rate when deleting nodes by aver-
age time per conversation, average numbers of sent mes-
sages, or numbers of sent messages per unit time. We be-


