CS 4803 Social Computing: Introduction

Munmun De Choudhury
munmund@gatech.edu
Week 1 | August 17, 2014
Part I: Course Structure and Information
Learning Objectives

• Social computing is one of the biggest forces on the internet

• **Goal: How and why social computing works?**
 • What's the right way to design social computing systems? What sense can you make out of all the data people leave behind? What's still out there to infer, understand, and build?

• **At the completion of this course, you’ll be able to:**
 • Understand important features of social computing
 • How to design and prototype new social computing systems
 • How to analyze data left behind in social media
 • Understand theoretical and practical research issues in this field
Grading

- Responses to Class Readings (on Piazza) - 20%
- Assignment I - 15%
- Assignment II - 15%
- In-class Presentation of Data Project Phase I (midterm) - 5%
- In-class Presentation of Data Project Phase II (final) - 5%
- Term project report and deliverables (due at final) – 30%
- Class Participation – 10%
Participation in Class Readings

- Readings are available on class website
 - Check the class webpage before each class, as readings are subject to change
 - http://www.munmund.net/CS4803.html

- Write short blurbs on Piazza (under “reading_reflections”) about the readings assigned for a particular class
 - Blurbs can range from 200-500 words in length

- Blurbs should focus on the following, but not limited to:
 - The novelty in the paper you read i.e., what was the contribution
 - Why the particular method/data used in the paper was appropriate
Piazza

• Sign up with your GT information at this link [IMPORTANT]:
piazza.com/gatech/fall2015/cs4803

• Class link:
piazza.com/gatech/fall2015/cs4803/home
Assignment I

- Due: October 7, 2015 (3:35pm)
- Questions around the reading materials covered until the point the assignment is released.
- One design-focused question that would require submitting a mockup.

What to hand in?
- Write up of answers to questions in a pdf document, along with the mockup.
- Submission on T-Square
Assignment II

- Due: November 25, 2015 (3:35pm)
- Questions around the reading materials covered until the point the assignment is released.
- One question that would test your thinking and formulation of applying data analytic approaches to a social computing question
OR
- Implement data analysis on a small dataset that will be provided

- What to hand in?
 - Write up of answers to questions in a pdf document; if data analysis question is chosen, then code and a short summary of findings need to be submitted together in a zipped folder
 - Submission on T-Square
Term Project

- Project idea proposal due: September 30, 2015 (T-Square, 3:35pm)
- Mid-term presentations (phase I) due: October 28, 2015
- Final presentations (phase II) due: December 7, 2015
- Final project report and materials due: December 9, 2015 (T-Square, 3:35pm)
- Goals:
 - Group project: 2-3 people
 - You are free to pick your group
 - Need to discuss your project idea with instructor early on in the course. Instructor will help you frame and provide guidance on the project
 - Presentations (both midterm and final) will be total 20 minutes, with 15 minutes talking about task accomplished, and rest for Q&A
What to hand in?

- If building a tool: working prototype, and proposal of a method of its evaluation
- If analyzing data: choice of the analysis technique (text vs. network analysis), key findings from the analysis (e.g., charts and tables)
- If literature review or a research proposal: ~10 page long report, single spaced, single column format (excluding figures, tables and references)
- Notes:
 - Clearly articulate in an extra page individual contribution
 - Okay to use open source tools (in fact encouraged)
Finding Data

- Based on your term project, if you need data...
- Suggestions:
 - Your own social media data. E.g., you might consider downloading all of your email or IM logs. Or, you could download all your Facebook or Twitter data.
- Hillary Mason's research dataset page: https://bitly.com/bundles/hmason/1
- Jure Leskovec’s SNAP page: https://snap.stanford.edu/data/
Late Policy

- Reading responses are due at 11:59pm on the day before the relevant class meeting.
- Assignments and project deliverables are due *one hour before class* (i.e., 3:35pm) on the date listed for that assignment/project.
- Any work (reading response, assignment, or project) submitted more than 15 minutes after the due time will be assessed a 10% penalty.
- Each additional 24 hours of lateness will result in an additional 10% being taken off the grade for that assignment. After 5 days, the assignment will not be accepted and a grade of 0% will be entered.
English as Second Language

• If English is not your first language, you may request to not be graded on your writing for a particular individual assignment.
 • This means you won't be penalized for bad writing, but you also won't get credit for good writing. To take advantage of this option, you must mark "ESL" (English as a Second Language) on the first page of your assignment/paper.

• This option is not available for the term project as it is a group assignment.
Academic Integrity

- This class abides by the Georgia Tech Honor Code.
- All assigned work is expected to be individual, except where explicitly indicated otherwise.
- You are encouraged to discuss the assignments with your classmates; however, what you hand in should be your own work.
 - Okay to use open-source software (no need to reinvent the wheel), however do acknowledge!
 - Copying/reusing code from your classmates and friends are not allowed; strict action will be taken if similarities are discovered
 - Copying (textual) content for your assignments and project from other published work (without citing them) is also not allowed, and is considered plagiarism
Required Skills

- Technical: any object-oriented/scripting language like Python, Perl, C#; some frontend development skills/web programming skills (ajax, javascript, php) if your project is about building a social tool

- Reading/writing: significant weightage on weekly class readings, mid-term and final term project report

- **Bonus**: Statistics/data mining: preliminary knowledge of working with some data and using some analytical software
No required text, only suggestions

- **Social Network Analysis:**
 - Networks, Crowds, and Markets, by David Easley and Jon Kleinberg
 - Six Degrees, by Duncan Watts

- **Social Science-y:**
 - On Individuality and Social Forms, by Georg Simmel
 - Networked, by Barry Wellman

- **Machine Learning:**
 - Machine Learning for Hackers, by Drew Conway and John Myles White
 - Natural Language Processing with Python, by Steven Bird, Ewan Klein, and Edward Loper
 - Pattern Classification, by Richard Duda, Peter Hart, and David Stork

- **Pop Statistics:**
 - The Signal and the Noise, by Nate Silver

- **Writing:**
 - Writing for Social Scientists, by Howard Becker
Help and Resources

- Office hours: 11am – 12 noon Fridays, or by appointment
- Location: TSRB 341

- Teaching Assistant: Trustin Clear
- Office hours: TBA
- Location: TBA
- Email: trustin@gatech.edu

- Class website (including readings): http://www.munmund.net/CS8803.html
General Resources

- Sample reading reflections will be made available on Piazza, under Resources
- Assignments will be released three weeks ahead on Piazza, under Resources
- Class slides (already lectured) can be obtained from the class website:
 http://www.munmund.net/CS4803.html

- Important announcements will be made over email (via T-Square)
Part II: Introductions

name + program

background

(e.g., tech/design)

what you want to learn from the class
Part III: Defining “Social Computing”
Defining Social Computing

The Social Life of Small Urban Spaces by William H. Whyte: https://vimeo.com/111488563
Syllabus and topics to be covered

- **Key characteristics**
 - SNS, social media overview; design of social systems
 - Discourse and dialogue; social capital
- **Methods**
 - Text analysis; network analysis
- **Key issues of social computing**
 - Credibility; trust; polarization; privacy
- **Uses of social computing systems**
 - Personality; trends and forecasting; event analytics; social news; social search and Q&A; location and mobility