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Summary	  
Table 1: Features.

Feature Set Feature

Features related
to the community,
C. (Edges between
only members of
the community are
EC ⊆ E.)

Number of members (|C|).
Number of individuals with a friend in C (the fringe of C) .
Number of edges with one end in the community and the other in the fringe.
Number of edges with both ends in the community, |EC |.
The number of open triads: |{(u, v, w)|(u, v) ∈ EC ∧ (v, w) ∈ EC ∧ (u, w) /∈ EC ∧ u ̸= w}|.
The number of closed triads: |{(u, v, w)|(u, v) ∈ EC ∧ (v, w) ∈ EC ∧ (u, w) ∈ EC}|.
The ratio of closed to open triads.
The fraction of individuals in the fringe with at least k friends in the community for 2 ≤ k ≤ 19.
The number of posts and responses made by members of the community.
The number of members of the community with at least one post or response.
The number of responses per post.

Features related to
an individual u and
her set S of friends
in community C.

Number of friends in community (|S|).
Number of adjacent pairs in S (|{(u, v)|u, v ∈ S ∧ (u, v) ∈ EC}|).
Number of pairs in S connected via a path in EC .
Average distance between friends connected via a path in EC .
Number of community members reachable from S using edges in EC .
Average distance from S to reachable community members using edges in EC .
The number of posts and response made by individuals in S.
The number of individuals in S with at least 1 post or response.

2.1 Dependence on number of friends
An underlying premise in diffusion studies is that an individual’s

probability of adopting a new behavior increases with the number
of friends already engaging in the behavior — in this case, the num-
ber of friends already in the community.
In Figures 1 and 2 we show this basic relationship for LJ and

DBLP respectively: the proportion P (k) of people who join a com-
munity as a function of the number k of their friends who are al-
ready members. For LJ, this is computed as follows.

• First, we took two snapshots of community membership, roughly
one month apart.

• Then we find all triples (u, C, k) such that

– C is a community, and
– u is a user who, at the time of the first snapshot, did not
belong to C, and

– u had k friends in C at that time.

• P (k) is then the fraction of such triples (u, C, k) for a given
k such that u belonged to C at the time of the second snap-
shot.

The procedure for DBLP is analogous, except that we use a snap-
shot for each year, and determine the fraction of individuals who
“join” a conference from one year to the next.
The plots for LJ and DBLP exhibit qualitatively similar shapes,

dominated by a “diminishing returns” property in which the curve
continues increasing, but more and more slowly, even for relatively
large numbers of friends k. This forms an interesting contrast to
the “S-shaped” curve at the heart of many theoretical models of
diffusion, in which the probability of adopting a new behavior fol-
lows a logistic function, with slow growth in adoption probability
for small numbers of friends k, rapid growth for moderate values
of k, and a rapid flattening of the curve beyond this point.
In fact, the curves do exhibit some slight but noticeable “S-shaped”

behavior: While the plots mainly show sublinear increase, we ob-
serve that they each display a deviation for k = 0, 1, 2 — namely,
P (2) > 2P (1) for both LJ and DBLP. In other words, the marginal
benefit of having a second friend in a community is particularly

strong. However the remainder of each plot exhibits diminishing
returns as k increases; thus the deviation at k = 0, 1, 2 can be seen
as a slight “S-shaped” effect before the sublinear behavior takes
over. Focusing on the function P (k) for LJ, since the error bars are
smaller here, we see that the curve continues increasing even for
quite large values of k. Indeed, there is a close fit to a function of
the form P (k) = a log k + b for appropriate a and b.
A key reason that the curve for LJ is quite smooth is that the

amount of data used to generate it is very large: the construction of
the plot in Figure 1 is based on roughly half a billion triples of the
form (u, C, k) with k > 0. The analogous number of triples for
DBLP is 7.8 million, and the curve becomes noisy at much smaller
values of k. This suggests that for computing P (k) as a function
of k in the context of diffusion studies, a very large sample may be
required to begin seeing the shape of the curve clearly.
We find it striking that the curves for LJ and DBLP have such

similar shapes (including the deviations for k = 0, 1, 2), given that
the types of communities represented by these two datasets have
such different characteristics: joining a community is a relatively
lightweight operation in LJ, requiring very little investment of ef-
fort, whereas the analogous act of joining in the case of the DBLP
dataset requires authorship and acceptance of a conference paper.
Curves with a diminishing returns property were also recently

observed in independent work of Leskovec et al. [25], in yet an-
other different context — recommendation data for on-line pur-
chases— although the curves in their case become noisier at smaller
values of k. The probability of friendship as a function of shared
acquaintances and shared classes also exhibits diminishing returns
in the work of Kossinets and Watts [23]. It is an interesting ques-
tion to look for common principles underlying the similar shapes
of the curves in these disparate domains.

2.2 A broader range of features
While these curves represent a good start towards membership

prediction, they estimate the probability of joining a community
based on just a single feature— the number of friends an individual
has in the community. We now consider a range of other features
related both to the communities themselves and to the topology of
the underlying network which could also, in principle, influence
the probability of joining a community. By applying decision-tree
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Summary	  
•  What	  factors	  predict	  whether	  a	  community	  will	  grow	  and	  survive	  

in	  the	  long	  term?	  	  
•  Main	  idea:	  investigate	  the	  role	  that	  two	  types	  of	  growth	  (growth	  

through	  diffusion	  and	  growth	  by	  other	  means)	  play	  during	  a	  
group’s	  formative	  stages	  

•  Results:	  79%	  accuracy	  in	  predicting	  growth	  of	  groups	  in	  the	  short-‐
term,	  while	  78%	  for	  those	  in	  a	  longer	  term	  spanning	  two	  years	  

•  Findings:	  
–  group	  clustering	  does	  increase	  the	  diffusion	  growth	  of	  a	  group,	  but	  that	  

groups	  which	  grow	  primarily	  through	  diffusion	  reach	  smaller	  sizes	  
eventually.	  	  

–  Past	  growth	  rates	  predict	  short	  term	  growth;	  incorporating	  network	  
structures	  e.g.	  size	  of	  GCC	  improves	  prediction	  of	  longer	  term	  group	  
growth	  



Summary	  
Category Feature Description

Growth Monthly Growth Rate Fraction of users who joined in the prior month
Fringe Growth Rate Fraction of users who joined in the prior month who joined from the fringe

Connectivity

Group Transitivity Transitivity of network formed by group members
Transitivity Ratio Ratio of group transitivity to transitivity of entire community

Group Density Density of network formed by group members
Density Ratio Ratio of group density to density of entire community

Structural Clique Ratio Largest fraction of group members whose edges form a clique
Disconnected Ratio Fraction of group members who are not a part of the group’s largest connected component

Table 2: Features used in all growth and longevity models.

(diffusion growth). If a group relies on diffusion growth, it can
only grow as much as the number of ties its members have to non-
members. At some point, a group relying on diffusion growth,
might run out of such ties, constraining its eventual growth. Thus,
while clustering in a group can increase joining activity from the
group’s fringe, it can also diminish the group’s overall growth.
Group growth and Ning community size. While Figure 5 offers
insight into the relationship between the amount of growth a group
experienced through diffusion and its future growth, it also shows
how this dynamic operates for groups in different settings. While
groups that reach eventually smaller sizes tend to experience more
diffusion growth, we can also compare growth rates for eventually
small groups in large communities and small communities.

According to Figure 5, among eventually small groups, those
that were established in Ning communities that are eventually small
tend to experience a greater proportion of diffusion growth than
those in Ning communities that are eventually large. For example,
in an eventually small group with 40 current members, an average
of 28% of its current members will have come from the fringe if
the group is in an eventually small community. By contrast, if the
same group were in an eventually large community, only 16% of
its current members will have come from the fringe on average.

These observations lead to the hypothesis that smaller commu-
nities may foster greater familiarity among individuals, and thus,
stronger social pressures to adopt behaviors such as group mem-
bership. This is consistent with social science research finding that
participation rates in civic groups or clubs, such as voter registra-
tion organizations, in small towns and rural areas is far higher than
in big cities [22]. Part of the explanation is that individuals expe-
rience more peer pressure in smaller, more intimate communities
than in big cities where they may be more isolated.

Figure 5 also shows the same contrast between small and large
communities for eventually large groups, but the difference is much
smaller. This is likely because eventually large groups generally at-
tract many members through wider appeal. That is, individuals join
not because they were invited by a ‘friend’ in the group; instead,
they join because they have some broad interest shared by the mem-
bers of the group. For example, consider the differences between
a Ning group that serves as an online fan club for a professional
sports team and a group used by close friends to exchange private
group messages. Regardless of where the online fan club group is
established–i.e. a small or large Ning community–its growth pri-
marily comes from its appeal to other fans rather than through the
influence of its members’ external friendship ties.
Diffusion Growth and Future Overall Growth. Figure 6 fur-
ther clarifies the relationship between the proportion of a group’s
current members who came from the fringe and the group’s future
growth rate. Specifically, in Figure 6, if no members of a 50 mem-
ber group joined from the fringe, then on average, we expect the
group to grow by a factor of 1.6 over the next 180 days. How-
ever, if 90% of the group joined from the fringe, then we expect the

group to only grow by a factor of 1.2 in the same amount of time.
We observe the same pattern when examining growth rates over
periods of 30 or 60 days. Again, this suggests that fringe growth
early in a group’s existence can diminish the eventual size of the
group. One hypothesis about why groups which grow primarily
through diffusion would be eventually smaller concerns the pur-
poses of these groups. Prior work has shown that group dynamics
can differ greatly for groups based on a common bond versusthose
based on a common identity [23, 24]. We discuss the connection
between these attachment types in Section 6.

5. PREDICTING GROWTH & LONGEVITY
Building on these empirical observations, we engage in two ma-

chine learning tasks aimed at predicting which groups will be suc-
cessful in attracting new members. The goal of our first task is to
understand what group and network characteristics predict whether
a group will grow faster or slower than others. Specifically, we ex-
plore how the predictive value of these features vary along three
dimensions: group age, group size, and prediction interval.

We test the effects of age by taking snapshots of groups at 60 and
180 days after their creation. For each age group, we separate these
snapshots into two categories according to size, resulting in a total
of 4 age-size ’buckets’ of data; for each of these buckets, we gen-
erate two models, one aimed at predicting short-term growth and
the other at predicting long-term growth. Building these 8 models
in this manner provides results which are cleaner and more inter-
pretable as they allow us to clearly observe how coefficients change
across groups of different ages and sizes and for the two predic-
tion intervals without having to explain complex interaction effects.
Comparing these models provides a rich picture of how diffusion
processes, group transitivity, and other features predict short-term
and long-term growth of groups. In our second modeling task, we
utilize these same features to predict whether groups will ’die’ or
cease to grow within a given period of time, shedding additional
light on how these group and network characteristics affect group
dynamics.

5.1 Features for Learning
We begin by defining a set of features to be used in our predictive

models, described in Table 2. We divide these features into three
rough categories which describe the data at different levels. The
first category, labeled growth features, capture how quickly and by
what means the group was growing when the snapshot was taken.
These features serve as a baseline, capturing both the current ’ve-
locity’ of growth, as well as insights from the prior section about
the role of diffusion processes in subsequent growth.

In addition, we consider a set of connectivity features, capturing
the probability of edges among members of the group absolutely
and relative to the community as a whole, and structural features,
chosen because they succinctly summarize aspects of higher-level
structure within the group. As most features approximated a log-

Size Statistics 60 Days 180 Days

Small
Number of Groups 5871 5312
2-Month Growth 1.333 1.165
2-Year Growth 2.613 1.934

Large
Number of Groups 1602 2884
2-Month Growth 1.147 1.076
2-Year Growth 1.494 1.267

Table 3: Number of groups, short-term (2-month) and long-
term (2-year) median growth rates for each age*size bucket.

normal distribution, values were log-transformed as part of our an-
laysis. Monthly growth rate and group transitivity more closely
approximated normality after being power-transformed.

5.2 Predicting Group Growth
We now describe in more detail the procedure used in our first

task of generating predictions about short-term and long-term group
growth. We started with a sample of 11,944 groups mined from
1,713 distinct Ning communities. These groups were selected us-
ing the same criteria for group size, community size, and expira-
tion date as in our prior analysis. To aid in generalizability, we
limited data collection to no more than 50 groups within any sin-
gle community in order to avoid over-representing a single, large
community in our analysis.

As mentioned above, we generated snapshots for groups at two
ages (60 and 180 days) and then separated groups of the same age
into ’small" (10-100 members) and ’large’ (150-1000) members.
Rather than including group size as a dependent variable, we bin
groups in this manner for two reasons: (1) results from prior work
indicate a natural threshold for group size around 150 members [8,
15], (2) our dependent variable, growth rate, does not exhibit equal
variance for small and large groups (a small group can feasibly
grow 100x in size, while a large group can not).

For each group, we define the ’growth rate’ to be the ratio of
the group size at prediction time to the group size at the time of the
first snapshot. For each group at a given age, we calculate the short-
term (2 month) and long-term (2 year) growth rates. Table 3 shows
median growth rates over these two prediction intervals. For each
combination of age, size, and prediction interval, we structure our
problem as a binary classification task, with class 1 representing
groups growing more quickly than the median rate, a formulation
which provides a balanced sample without excluding groups from
our analysis. We generate predictions using a classifier based on
logistic regression.

5.2.1 Growth: Results
Below, we summarize and compare results from the 8 models

(for each combination of group age, size, and prediction interval)
described above. In evaluating our models, we consider two dif-
ferent evaluation measures: the classification accuracy and the area
under the ROC curve (AUC). In each task, we generate models for
each category of features and a fourth combining all features.
Short-term growth. In Figure 7, we show the accuracy of model
predictions for short-term growth. Rows show results for groups
of the same age, and columns show groups of the same size. In
each cell, the four bars correspond to the four models: (G)rowth,
(C)onnectivity, (S)tructural, and (ALL) features. For short-term
growth, we can clearly see that the growth features contribute the
most to the accuracy of the models and that predictions are more
accurate for larger, younger groups, perhaps where the growth rate
from the prior month provides more signal. For large groups at
60 days, for instance, the combined model achieves 79.2% accu-
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Figure 7: Short-term (2-month) prediction accuracy of models.
Rows show groups of the same size, columns show groups of
the same age. Note that the y-axis starts at 0.5, the expected
accuracy of a random model.

racy (AUC = 0.868), with predictions driven almost entirely by the
growth metrics. As shown in Figure 7, models based on growth
metrics alone consistently achieved prediction accuracy over 68.6%
(consistently over 77.3% for large groups).

Table 4 shows regression coefficents for the models combining
all features. Within each age-size bucket, distributions for each fea-
ture were standardized to have a mean of 0 and standard deviation
of 1, allowing us to directly compare regression coefficients. Here,
we see clearly that short-term predictions are heavily dependent on
monthly growth rate, especially for large groups. For small groups,
we find that increased group transitivity and growth from the fringe
signal a decreased likelihood that a group will grow rapdily, match-
ing earlier observations about diffusion processes, transitivity and
growth. An intriguing finding seemingly at odds with this obser-
vation about transitivity is that a larger clique seems to predict an
increased likelihood that a group will grow rapidly, with this effect
stronger for small groups. Furthermore, groups with more individ-
uals outside the largest connected component seem to grow more
quickly as well. Together, these findings hint at a more nuanced
picture of how network properties predispose groups to growth,
which we will discuss later on in our analysis.
Long-term growth. Figure 8 shows prediction accuracy achieved
by our models for long-term growth. Again, rows correspond to
group size, columns to group age, and the bars in each cell represent
the four models. In general, our models still achieve relatively high
accuracy, up to 78.6% (AUC = 0.868) for small groups at 60 days
and consistently over 71.9% (AUC = 0.782), in predicting whether
groups will grow rapidly over the subsequent two years. We see
an interesting pattern where model fit for small groups is better at
60 days and for large groups at 180 days; looking more closely, we
see that this is because different features appear to be contributing
to predictions for small and large groups. For small groups, we see
that the models based on structural features are more accurate than
those based on growth metrics.

In Table 5, we show coefficients for the combined models (as
with the short-term models, distributions for feature values are stan-
dardized). Again, we see a pattern where increased growth from
the fringe predicts decreased growth rates for small groups and in-
creased transitivity predicts decreased growth for all groups. In

Small Large
Feature 60 Days 180 Days 60 Days 180 Days
Monthly Growth 1.19*** 0.88*** 1.94*** 2.00***
Fringe Growth -0.20*** -0.10* — —
Group Trans. -0.68*** -0.67*** — —
Trans. Ratio 0.22*** 0.12* — —
Group Dens. 0.24* — — —
Dens. Ratio -0.14** -0.11 — —
Clique Ratio 0.95*** 1.10*** — 0.32**
Disconnected 0.34*** 0.38*** — 0.33***

Table 4: Regression coefficients for combined models predict-
ing short-term growth (For this and following tables: * p <
0.01, ** p < 0.005, *** p < 0.001). Coefficients with p > 0.05
are not reported.

addition, the presence of larger cliques and more members outside
the giant component is predictive of increased growth for groups
of all sizes and ages. Interestingly, at least for small groups, these
structural features now appear to play a very large role regarding
the outcome of our predictions.
Predictive Value of Features. As expected, groups which were
growing quickly at the time of the first snapshot were likely to con-
tinue to do so over the short-term, though the extent to which this
feature predicted long-term growth for large groups may have been
surprising. Of greater interest to us, however, were the findings
pertaining to fringe growth, which confirm the results of our prior
empirical investigation concerning the role that diffusion processes
play in the growth of groups. We find that the negative effect of dif-
fusion processes on subsequent growth is significant only for small
groups, suggesting some support for our initial hypothesis about
differences between groups smaller and larger than 150 members.

Similarly, for small groups, our models confirmed prior observa-
tions concerning group transitivity and growth, with increased tran-
sitivity predicting decreased growth over the short-term for small
groups and over the long-term for all groups. An interesting re-
sult seemingly at odds with these findings about transitivity was
that, over both prediction intervals, the presence of a large clique
appeared to predict a greater likelihood of subsequent growth. The
estimated effect of clique size on subsequent growth was especially
high for small groups, hinting that these structural features may be
important at the early stages of group formation. In the discussion,
we provide hypotheses about types of network structures which
could lead to these combinations of features. Our finding that hav-
ing more members outside of the largest connected component ap-
pears to be a good predictor of growth coincides with our notion
of non-diffusion growth (membership ’jumps’ across the network
rather than following existing connections).

We chose this classification approach to match the real-world
analysis task of identifying groups which will be ’successful’ in the
future; an alternative approach would be to utilize linear regres-
sion to predict final group size. Though space does not permit a
full exposition of these linear models, our experiments showed that
group size could be predicted with some accuracy (for long-term
growth predictions, we achieved adjusted R2 values around 0.5 for
models combining all features). While these final size predictions
were driven heavily by growth features, an analysis of deviance re-
vealed that adding features pertaining to network connectivity and
structure provided a better model fit despite the added complexity.

5.3 Predicting Group Longevity
In this section, we focus on the closely related problem of pre-

dicting when groups will ’die’, or cease to attract new members.
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Figure 8: Long-term (2-year) prediction accuracy of models.

Instead of predicting when groups will cease to grow, we again
avoid right-censoring problems by focusing on the binary classifi-
cation task of predicting whether they will continue to grow after 1
year (360 days). In order to simplify our analysis in this section, we
focus on groups at a single age (90 days), selecting the 1818 groups
which stopped growing within a year (Class 0) and the 1818 groups
which grew the fastest after 1 year (Class 1) to obtain a balanced
sample. We utilize the same features and logistic regression ap-
proach used before. As our goal is now to predict which groups will
’die’, we expect that the feature coefficeints learned by the model
will have signs opposite those in the growth analysis (i.e. features
which positively predict growth should negatively predict death).
Results. Coefficients estimated by our five models, as well as the
accuracy and AUC for each, are summarized succinctly in Table
6. For the task of predicting whether groups would stop growing
within a year, the group size at the time of the snapshot again pro-
vided the most information, followed by the structural metrics. The
model using only structural metrics achieved a favorable 70.4% ac-
curacy (AUC = 0.759) compared to random chance (50.0%) and
the models utilizing only growth (62.0% accuracy) or connectivity
(61.9% accuracy) features. Our combined model achieves 77.4%
accuracy (AUC = 0.834) in predicting whether groups will ’die’
within a year. Observing the magnitude and sign of learned coeffi-
cients for the longevity model, we see that they match closely the
findings from the growth analysis. We summarize these observa-
tions in the list below and then in more detail in our discussion.

• A higher proportion of growth from diffusion corresponds to
a higher likelihood that a group will die.

• Clique Ratio is the strongest feature: a large clique makes a
group significantly less likely to die.

• We see similar patterns as with growth with respect to the
Group Transitivity and Disconnected Ratio features – low
transitivity and fewer members in the large connected com-
ponent make a group significantly less likely to die.

• One finding which differs from the growth analysis is that
groups which are more dense than their surrounding com-
munity are more likely to die.

• Groups with a high monthly growth rate are more likely to
continue growing a year later.



Summary	  



Relate	  the	  densification	  law	  of	  social	  graphs	  
given	  in	  Leskovec	  et	  al.	  to	  two	  theories	  we	  
have	  studied:	  (1)	  structural	  balance	  and	  
triangle	  closure,	  (2)	  4-‐6	  degrees	  of	  separation	  



Backstrom	  et	  al	  found	  that	  topical	  changes	  (or	  
movement	  bursts)	  were	  associated	  with	  
movement	  of	  individuals	  between	  
communities.	  What	  factors	  could	  be	  similar	  or	  
distinct	  in	  the	  case	  of	  social	  network	  
communities?	  



The	  design	  of	  today’s	  social	  media	  sites	  may	  
allow	  for	  lesser	  community	  movement,	  
simply	  because	  one	  could	  lurk	  on	  one	  
community	  while	  being	  active	  on	  the	  other.	  
How	  do	  you	  envision	  these	  communities	  to	  
evolve	  over	  time?	  



Many	  communities	  on	  social	  media	  form	  due	  
to	  external	  (and	  uncontrolled)	  events,	  e.g.,	  
the	  #ebola	  outbreak.	  Can	  the	  models	  of	  
community	  evolution	  examined	  in	  Backstrom	  
et	  al	  or	  Kairam	  et	  al	  explain	  these	  
instantaneous	  group	  formations?	  



How	  would	  the	  findings	  of	  Backstrom	  et	  al	  
and	  Kairam	  et	  al	  generalize	  to	  social	  media	  
sites	  which	  are	  more	  content	  focused	  than	  
friendship	  focused?	  



How	  do	  we	  characterize	  group	  splitting	  or	  group	  
merging	  over	  time?	  

LETTERS

Quantifying social group evolution
Gergely Palla1, Albert-László Barabási2 & Tamás Vicsek1,3

The rich set of interactions between individuals in society1–7

results in complex community structure, capturing highly con-
nected circles of friends, families or professional cliques in a social
network3,7–10. Thanks to frequent changes in the activity and com-
munication patterns of individuals, the associated social and com-
munication network is subject to constant evolution7,11–16. Our
knowledge of the mechanisms governing the underlying commun-
ity dynamics is limited, but is essential for a deeper understanding
of the development and self-optimization of society as a whole17–22.
We have developed an algorithm based on clique percolation23,24

that allows us to investigate the time dependence of overlapping
communities on a large scale, and thus uncover basic relationships
characterizing community evolution. Our focus is on networks
capturing the collaboration between scientists and the calls be-
tween mobile phone users. We find that large groups persist for
longer if they are capable of dynamically altering their member-
ship, suggesting that an ability to change the group composition
results in better adaptability. The behaviour of small groups dis-
plays the opposite tendency—the condition for stability is that
their composition remains unchanged. We also show that know-
ledge of the time commitment of members to a given community
can be used for estimating the community’s lifetime. These find-
ings offer insight into the fundamental differences between the
dynamics of small groups and large institutions.

The data sets we consider are (1) the monthly list of articles in the
Cornell University Library e-print condensed matter (cond-mat)
archive spanning 142 months, with over 30,000 authors25, and (2)
the record of phone calls between the customers of a mobile phone
company spanning 52 weeks (accumulated over two-week-long per-
iods), and containing the communication patterns of over 4 million
users. Both types of collaboration events (a new article or a phone
call) document the presence of social interaction between the
involved individuals (nodes), and can be represented as (time-
dependent) links. The extraction of the changing link weights from
the primary data is described in Supplementary Information. In
Fig. 1a, b we show the local structure at a given time step in the
two networks in the vicinity of a randomly chosen individual
(marked by a red frame). The communities (social groups repre-
sented by more densely interconnected parts within a network of
social links) are colour coded, so that black nodes/edges do not
belong to any community, and those that simultaneously belong to
two or more communities are shown in red.

The two networks have rather different local structure: the collab-
oration network of scientists emerges as a one-mode projection of the
bipartite graph between authors and papers, so it is quite dense and
the overlap between communities is very significant. In contrast, in the
phone-call network the communities are less interconnected and are
often separated by one or more inter-community nodes/edges. Indeed,
whereas the phone record captures the communication between two
people, the publication record assigns to all individuals that contribute
to a paper a fully connected clique. As a result, the phone data are

dominated by single links, whereas the co-authorship data have many
dense, highly connected neighbourhoods. Furthermore, the links in
the phone network correspond to instant communication events, cap-
turing a relationship as it happens. In contrast, the co-authorship data

1Statistical and Biological Physics Research Group of the HAS, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Center for Complex Network Research and Departments of Physics and
Computer Science, University of Notre Dame, Indiana 46566, USA. 3Department of Biological Physics, Eötvös University, Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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Figure 1 | Structure and schematic dynamics of the two networks
considered. a, The co-authorship network. The figure shows the local
community structure at a given time step in the vicinity of a randomly selected
node. b, As a but for the phone-call network. c, The filled black symbols
correspond to the average size of the largest subset of members with the same
zip-code, Ænrealæ, in the phone-call communities divided by the same quantity
found in random sets, Ænrandæ, as a function of the community size, s. Similarly,
the open symbols show the average size of the largest subset of community
members with an age falling in a three-year time window, divided by the same
quantity in random sets. The error bars in both cases correspond to Ænrealæ/
(Ænrandæ 1 srand) and Ænrealæ/(Ænrandæ 2 srand), where srand is the standard
deviation in the case of the random sets. d, The Ænrealæ/s as a function of s, for
both the zip-code (filled black symbols) and the age (open symbols). e, Possible
events in community evolution. f, The identification of evolving communities.
The links at t (blue) and the links at t 1 1 (yellow) are merged into a joint graph
(green). Any CPM community at t or t 1 1 is part of a CPM community in the
joined graph, so these can be used to match the two sets of communities.

Vol 446 | 5 April 2007 | doi:10.1038/nature05670

664
Nature   ©2007 Publishing Group

Palla,	  Barabasi,	  &	  Vicsek,	  Nature	  Letters	  2007	  	  



Next	  class	  


