CS 8803 Social Computing:
Data Mining Review

Munmun De Choudhury

munmund@gatech.edu

Regression

What if we need prediction?

* Answer: Regression

* Inaway, prediction is similar to classification
— First, construct a model
— Second, use model to predict unknown value

* Major method for prediction is regression

— Linear and multiple regression

— Non-linear regression

But prediction is different from classification

» C(lassification refers to predict categorical class label

* Prediction models continuous-valued functions

Dependent and Independent Variables
In Linear Regression

* independent variable (denoted as X) - the variable that is
used to explain changes

* dependent variable (denoted asY) - the variable thatis to
be explained.

* Linear regression involves the use of one variable to make a

prediction about other variable. It also involves testing
hypotheses about the relation between the two variables
and quantifying the strength of relationship between the
two variables.

Types of Regression Models

Negative Linear Relationship
A

>

Negative Linear Relationship

A

Relationship NOT Linear

A

No Relationship

A

—— v

Regression Analysis and Log-Linear
Models in Prediction

Linear regression:Y = o + f X

* Two parameters, a and {3 specify the line and are to be
estimated by using the data at hand.

* using the least squares criterion to the known values of Y4, Y2,
oy X1, X2, ...

Multiple regression:Y = bo + b1 X1 + b2 X2.

* Many nonlinear functions can be transformed into the above.
Log-linear models:

* The multi-way table of joint probabilities is approximated by a
product of lower-order tables.

* Probability: p(q, b, ¢, d) = atab Pacyad dbcd

Sample Regression Function

y y=b,+bx+¢

Observed Value of y O
for x; ¢ 9 \ .

Predicted Value of
y for x;

Intercept = 3, {

Random Error for this x

value O

Assumptions of Multiple Regression
Model

* There exists a linear relationship between the dependent and
independent variables.

* The expected value of the error term, conditional on the independent
variables is zero.

* The error terms are homoskedastic, i.e. the variance of the error terms
is constant for all the observations.

* The expected value of the product of error terms is always zero, which
implies that the error terms are uncorrelated with each other.

* The errorterm is normally distributed.

* Theindependent variables doesn’t have any linear relationships
between each other.

Standard Error of Estimate

Standard Error of Estimate (also called the standard error of
regression) - used to measure how accurately a regression
model fits the data.

Formula:

Lo

/2

SEE = i=l —| =

Calculating ANOVA in Regression
Analysis
Analysis of Variance (ANOVA) - a statistical procedure that is

used to determine how well the independent variable or
variables explain the variation in the dependant variable.

F-test - the statistical test that is used in the analysis of the
variance

F-test

* A F-statistic is used to test whether the slope coefficients in
a linear regression are equal to o or not.

* Inaregression equation with one independent variable:

= Null Hypothesis H, : b = o (for multiple regression model, all the
slope coefficients are equal to o)

= Alternative Hypothesis H, : b.# o (for multiple regression model, at
least one slope coefficient is not equal to o)

* Things required to undertake an F-test
* the total number of observations
* the total number of parameters to be estimated
* the sum of squared errors(SSE)
* regression sum of squares (RSS)

F-test (one independent variable)

Formula: SSE Formula: RSS

Sy, -7,) S5, -7)
i=1 i=1

2

Formula: Total Variation
(TSS) =SSE + RSS

Formula: F-statistic in a regression with one independent variable

~ RSS/1
SSE /(n —2)

F-statistic in Multiple Regression
Analysis

Things required for F-test

Total number of observations (n).

Total number of regression coefficients to be estimated (k
+1) where k is number of slope coefficients.

Sum of squared errors (SSE) (Unexplained Variation)

2

i(Yz _I}i)- = g,éiz

i=l

Regression sum of squares (RSS) (Explained Variation)

(1, -7’

F-statistic in Multiple Regression
Analysis

Calculating the F-statistic

RSS
F= F _ Mean Re gression Sum of squares
SSE Mean squared error
[— (& +1)]

Degrees of freedom in the test
1) k (numerator degrees of freedom)
2) n-(k+1) (denominator degrees of freedom)

Multicollinearity in Regression
Analysis

Multicollinearity - a violation of the regression assumption
that there is no exact linear relationship between two or more
independent variables

Consequences of Multicollinearity

Estimates of regression coefficients become unreliable.

It is not possible to ascertain how individual independent
variables affect dependent variables.

Model Misspecification in
Regression Analysis

Model specification - the set of variables that are included in
the regression and the regression equation’s functional form

Misspecified Functional Form

It omits one or more important variables from regression.

One or more regression variables are required to be transformed
before estimating the regression.

Data has been pooled from different samples that are not to be
pooled.

Calculating the Predicted Trend Value
foraTime Series

Linear Trend Models - the dependent variable changes at a
constant rate with time

Formula: v, =bo +b1r+£r 1 =12...T

Where: y, - value of the time series at time t
b, - the y-intercept term
b, - the slope coefficient (trend coefficient)
t - time (independent variable)
E. - arandom error term

Calculating the Predicted Trend Value
foraTime Series

Log-Linear Trend Models - used when the time series tends to
grow at a constant rate

Formula: In y, =b, +b,f +&, t=12..T

Predicted trend value of ¥, is g%+

Feature Engineering

Data pre-processing

» Lower case & remove accentuated chars:

import unicodedata

s = ".join(c for ¢ in unicodedata.normalize('NFD', s.lower())
If unicodedata.category(c) !="'Mn")

« Extract only word tokens of at least 2 chars

 Using NLTK tokenizers & stemmers
« Using a simple regexp:

re.compile(r\b\w\w+\b", re.U).findall(s)

Sentence Tokenization

>>> from nltk.tokenize import sent_tokenize
>>> sent_tokenize("Hello SF Python. This is NLTK.")
['Hello SF Python.', 'This is NLTK.']

>>> sent_tokenize("Hello, Mr. Anderson. We missed you!")
['Hello, Mr. Anderson.’, "We missed you!’]

Sentence
“—'I Tokenizer I—V [sentence]

Constructing features (text)

« Tokenize document: list of uni-grams

['the', 'quick’, 'brown’, 'fox’, jumps’, 'over’, 'the’, 'lazy’, 'dog’]
« Binary occurrences / counts:

{'the": True, 'quick": True...}
* Frequencies:

{'the". 0.22, 'quick’: 0.11, 'brown": 0.11, 'fox": 0.11...}
 TF-IDF

{'the": 0.001, 'quick": 0.05, 'brown": 0.06, 'fox": 0.24...}

Constructing features (text)

. Term Frequency tf g g
L] = Zkz nk,j
« Inverse Document Frequency ‘ ‘
D
dt; =1
T e d

« Non informative words such as “the” are scaled done

Word Tokenization

>>> from nltk.tokenize import word tokenize
>>> word_tokenize('This is NLTK.")
['This', 'is’, 'NLTK", ".']

Constructing features (text)

» bi-grams of words:

 “New York”, “very bad”, “not good”
* n-grams of chars:

« “the”, “ed ”, “ a ” (useful for language guessing)
« Combine with:

 Binary occurrences

 Frequencies
« TF-IDF

Feature extraction in Python

Unigram features

def word_features(words):
return dict((word, True) for word in words)
Bigram Collocations
from nltk.collocations import BigramCollocationFinder
from nltk.metrics import BigramAssocMeasures as BAM

from itertools import chain

def bigram_features(words, score_fn=BAM.chi_sq):
bg_finder = BigramCollocationFinder.from_words(words)
bigrams = bg_finder.nbest(score_fn, 100000)

return dict((bg, True) for bg in chain(words, bigrams))

Complete sentences are composed of two or
more “phrases”.

Noun phrase:

* Jack and Jill went up the hill

Prepositional phrase:
 Contains a noun, preposition and in most cases an adjective
* The book is on the table but perhaps it is best kept in a bookshelf

Gerund Phrase:
* Phrases that contain "-ing” verbs
* Jack fell down and broke his crown and Jill came tumbling after

Why Part-of-Speech Tag?

= word definition lookup (WordNet, WordNik)
= fine-grained text analytics
= part-of-speech specific keyword analysis

x chunking & named entity recognition (NER)

Part-ct-Speech
e I—N(word. tag)]

Part-of-Speech Tagging

>>> words = word_tokenize("And now for something completely
different”)

>>> from nltk.tag import pos_tag

>>> pos_tag(words)

[(And’, 'CC"), (now/, 'RBY), (‘for’, 'INY), ((something’, 'NN"), (‘completely’,
'‘RB"), (‘different’, JJ)]

Tags List: http://www.ling.upenn.edu/courses/Fall 2003/
ling001/penn treebank pos.html

Sentence I » Word I » Part-ot-Speech I >

Take the following sentence

Jack and Jill went up the hill

Noun phrase

Noun Phrase

Chunkers will get us this far:

=

Jack and Jill] went up [the hill]

Chunk tokens are non-recursive — meaning, there
Is no overlap when chunking

The recursive form for the same sentence is:

(Jack and Jill went up (the hill))

Verb phrase chunking

Jack and Jill went up the hill to fetch a pail of water

Verb Phrase Verb Phrase

from nltk.chunk import *

from nltk.chunk.util import *

from nltk.chunk.regexp import *

from nltk import word_tokenize,pos_tag

text=""
Jack and Jill went up the hill to fetch a pail of water

tokens = pos_tag(word_tokenize(text))

chunk = ChunkRule("<.*>+", "Chunk all the text")
chink = ChinkRule("<VBD | IN|\.>", “VWerbs/Props")
split = SplitRule(" <DT><NN>", "<DT><NN>","determiner+noun")

chunker = RegexpChunkParser([chunk, chink, split],chunk_node="NP ")
chunked = chunker.parse(tokens)
chunked.draw()

Classification Algos in NLTK

= Nalve Bayes
= Maximum Entropy / Logistic Regression
= Decision Tree

= SVM (coming soon)

Bl e

Text
C

Classification using NLTK

from nltk.classify import NaiveBayesClassifier
neg_examples = [(features(reviews.words(i)), 'neg’) for i in neg_ids]
pos_examples = [(features(reviews.words(i)), 'pos') for i in pos_ids]

train_set = pos_examples + neg_examples

classifier = NaiveBayesClassifier.train(train_set)

Other NLTK Features

= clustering
= Mmetrics
= parsing
= stemming
= \NordNet

= .. and a lot more

Notable Included Corpora

= Movie_reviews: pos & neg categorized IMDb reviews
= treebank: tagged and parsed WSJ text

x freebank_chunk: tagged and chunked WSJ text

= prown: tagged & categorized english text

= 60 other corpora In many languages

Other Python NLP Libraries

= pattern; http://www.clips.ua.ac.be/pages/pattern

= scikits.learn: http://scikit-learn.sourceforge.net/stable/

= fuzzywuzzy: hitps://github.com/seatgeek/fuzzywuzzy

Doing slightly advanced data mining

YoXe! scikits.learn: machine learning in Python — scikits.learn v0.7 documentation

.‘ scikits.learn: machine learning i... *

ese s scikits.learn: machine learning in Python

scikits.learn 0.7 is available tsonstes ember of chaters 3
for download. See what's
new and tips on installing.

Videos

Watch the 2010 ICML
Introductory Video by Gaél

:
:

Easy-to-use and general-purpose machine learning in Python

Participate scikits.learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific
Python packages (numpy, scipy, matplotlib).
Fork the source code, join
the mailing lists, report bugs It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in

to the issue tracker or various contexts: machine-learning as a versatile tool for science and engineering.
participate in the next
coding sprint. Read More...

Features: . Solid: Supervised leamning: Support Vector Machines, Generalized Linear Models.

« Work in progress: Unsupervised learning: Clustering, Gaussian mixture models, manifold learning, /CA,

Gaussian Processes
User Guide « Planed: Gaussian graphical models, matrix factorization .
Example Gallery License: (QOpen source, commercially usable: BSD license (3 clause) X

N

Feature extraction using scikits.learn

from scikits.learn.features.text import WordNGramAnalyzer
text = (u"J'ai mang\xe9 du kangourou ce midi,"

u" c'\xe9tait pas tr\xeas bon.")

WordNGramAnalyzer(min_n=1, max_n=2).analyze(text)

[u'al', uUmange’, u'du’, u'kangourou’, u'ce’, u'midi’, u'etait’,
u'pas’, u'tres’, u'bon’, u'ai mange', u'mange du’, u'du
kangourou', u'kangourou ce', u'ce midi', u'midi etait', u'etait
pas', u'pas tres', u'tres bon']

from scikits.learn.features.text import CharNGramAnalyzer

analyzer = CharNGramAnalyzer(min_n=3, max_n=0)

char_ngrams = analyzer.analyze(text)

TF-IDF features and SVM

from scikits.learn.features.text.sparse import Vectorizer

from scikits.learn.sparse.svm.sparse import LinearSVC

vec = Vectorizer(analyzer=analyzer)

features = vec.fit_transform(list_of_documents)

clf = LinearSVC(C=100).fit(features, labels)

clf2 = pickle.loads(pickle.dumps(clf))

predicted_labels = clf2.predict(features_of new_docs)

Import numpy as np

from sklearn.svm import SVR

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

X,y = np.load(‘data.npz’)
x_test = np.linspace(o, 200)

regularization

model = Pipeline([ferm

(‘standardize', StandardScaler()),
(‘'svr', SVR(kernel="rbf', verbose=0, C=5e6,
epsilon=20)) 1)
model.fit(x[::, np.newaxis], y)
y_test = model.predict(x_test[::, np.newaxis])

Clustering using scikits.learn

from sklearn import datasets
from sklearn.cluster import KMeans
from numpy.random import RandomState

rng = RandomState(42)
k_means = KMeans(3, random_state=rng)

boston = datasets.load_boston()

X = boston.data
k_means.fit(X)

Text Feature extraction in sklearn

sklearn.feature extraction.text
CountVectorizer

— Transform articles into token-count matrix
TfidfVectorizer

— Transform articles into token-TFIDF matrix
Usage:
— fit(): construct token dictionary given dataset

— transform(): generate numerical matrix

Text Feature extraction

* Analyzer

— Preprocessor: str -> str
e Default: lowercase
e Extra: strip_accents — handle unicode chars

— Tokenizer: str -> [str]

* Default: re.findall(ur"(?u)\b\w\w+\b“ string)
— Analyzer: str -> [str]

1. Call preprocessor and tokenizer

2. Filter stopwords
3. Generate n-gram tokens

Feature Selection

* Decrease the number of features:
— Reduce the resource usage for faster learning

— Remove the most common tokens and the most
rare tokens (words with less information):
* Parameter for Vectorizer:
— max_df
— min_df

— max_features

Cross Validation

* When tuning the parameters of model, let
each article as training and testing data
alternately to ensure the parameters are not
dedicated to some specific articles.

— from sklearn.cross_validation import KFold
— for train_index, test_index in KFold(10, 2):

e train_index=[567 8 9]
e test index=[012 3 4]

Performance Evaluation

* precision =

e recall =

* flscor

tp+fn

tp e sklearn.metrics
tp+fp

— precision_score

— recall_score
o =7 precisionxrecall f1_score
precisiontrecall actual class

(observation)

tp fp
(true positive) (false positive)
predicted class Correct result Unexpected result
(expectation) fn tn
(false negative) (true negative)

Missing result Correct absence of result

Using scikits.learn Summary

)

\O°

o
. S
0 |
_ Tr_?_lnl{mg 05.‘("} | features
eX N© vectors
Documents,

Images, _ _

Sounds... - -
‘ _ s

‘ L] \‘{\\.\1\&

AR

Labels :

ﬁ — >
| (\e““\

6005/

o\
0%
New \(as‘

Text Je©” features

ey | WY | |vecor M)
Sound, |

Machine
Learning
Algorithm

Predictive
Model

Expected
Label

scikit-learn
algorithm cheat-sheet

classification
get
more
.

NO
= O NOT e YES
Text SRMKINS <100K
Data o Samples
' predicting a
ves | category
YES

do you have
labeled
NO data
YES

predicting a
number of quantity
categories
known

just
looking %

regression

NO,

<100K NOT
samples WORKING

clustering

NOT
WORKING
NOT
WORKING

dimensionality
reduction

A few notes

-The quality of your input data will affect the accuracy of
your classifier.

- The threshold value that determines the sample size of
the feature set will need to be refined until it reaches its
maximum accuracy. This will need to be adjusted if
training data is added, changed or removed.

Sentiment Classification w/ Python

* Sentiment Classifier using Word Sense Disambiguation
using wordnet and word occurrence statistics from movie review
corpus nltk.

* Classifies into positive and negative categories.

pip install sentiment_classifier
python setup.py install

cd sentiment_classifier/src/senti_classifier/
python senti_classifier.py -c reviews.txt

from senti_classifier import senti_classifier

sentences = ['The movie was the worst movie', It was the worst acting by the actors']
pos_score, neg_score = senti_classifier.polarity_scores(sentences)

print pos_score, neg_score

Some pointers

e http://scikit-learn.sf.net doc & examples

nttp://github.com/scikit-learn code
e http://www.nltk.org code & doc & PDF book
e http://streamhacker.com/

« Jacob Perkins' blog on NLTK & APIs
https://github.com/japerk/nltk-trainer

Next class

* Monday g/22 (topic: Text—Polarity/Affect)
* There are assigned readings on the topic; check class website

